Malocclusion is an important risk factor for temporomandibular disorder (TMD), a series of disorders characterized by dysfunction in the orofacial region involving the temporomandibular joint (TMJ) and jaw muscles. We recently showed that experimental unilateral anterior crossbite (UAC) produced masseter hyperactivity through a circuit involving the periodontal proprioception, trigeminal mesencephalic nucleus (Vme), and trigeminal motor nucleus (Vmo). Anxiety is a common complication in patients with TMD. The lateral habenula (LHb) is involved in emotional modulation and has direct projections to the Vme. Therefore, the present research examined whether UAC facilitates excitatory input from the LHb to the Vme and, subsequently, anxiety-like behaviors in rats. The LHb activation was evaluated by the electrophysiological recording, assessment of vesicular glutamate transporter-2 (VGLUT2) mRNA expression, and measurement of anxiety-like behaviors. The effects of LHb activity on Vme were evaluated by electrophysiological recording from Vme neurons and local changes in VGLUT2 protein density. UAC produced anxiety in modeled rats and increased neuronal activity in the LHb. VGLUT2 mRNA expression was also increased in the LHb. Further, VGLUT2-positive boutons were observed in close apposite upon parvalbumin (PV)-labeled Vme neurons. VGLUT2 protein expression was also increased in the Vme. Significantly, injection of VGLUT2-targeted shRNA into the LHb reduced the expression of VGLUT2 protein in the Vme, attenuated UAC-associated anxiety-like behaviors, and attenuated electrophysiological changes in the Vme neurons. In conclusion, we show that UAC activates the LHb neurons as well as the periodontal proprioceptive pathway to provide excitatory input to the Vme and produce anxiety in rats. These findings provide a rationale for suppressing activity of the LHb to attenuate both the physical and psychological effects of TMD.
Unilateral anterior crossbite (UAC) has been demonstrated to cause masseter hyperactivity via the periodontal trigeminal mesencephalic nucleus (Vme)–trigeminal motor nucleus circuit. Here, we studied activation of motor neurons of the facial nucleus (VII), hypoglossal nucleus (XII), nucleus ambiguus (Amb), and spinal nucleus of the accessory nerve (SNA) in rats with UAC via their similar connections with Vme. An anterograde tracer, biotinylated dextran amine (BDA), was injected into the Vme to identify the central axon terminals around the motor neurons of VII, XII, Amb, and SNA. The expression of vesicular glutamate transporter 1 (VGLUT1) in neurons of VII, XII, Amb, and SNA, and the expression of acetylcholinesterase (AChE) were measured in the stapedius, lingualis, palatopharyngeal, and sternocleidomastoid muscles. In BDA‐treated rats, many BDA‐labeled cell bodies in the Vme and terminals in VII, XII, Amb, and SNA were identified. Compared with control rats, rats with UAC showed higher expression of VGLUT1 in these nuclei, and statistically significantly higher expression of AChE in the stapedius, lingualis, and sternocleidomastoid muscles, but not in the palatopharyngeal muscle. These findings suggest that UAC activates orofacial, head, and cervical multimotor behaviors via connections between the Vme and the corresponding motor nuclei.
Occlusion has been proposed to play a role for body posture and balance, both of which are mediated mainly by the cerebellum. The dorsomedial part of the principal sensory trigeminal nucleus (Vpdm) has direct projection to the cerebellum. The experimental unilateral anterior crossbite (UAC) has an impact on the motor nuclei in the brain stem via trigeminal mesencephalic nucleus (Vme). The current aim was to explore whether UAC has an impact on Vpdm‐cerebellum circuit. The inferior alveolar nerve was injected into cholera toxin B subunit (CTb), the cerebellum was injected into fluoro‐gold (FG), and the Vpdm was injected into biotinylated dextran amine (BDA) to identify the activation of Vpdm‐cerebellum circuit by UAC. Data indicated that there were more neuronal nuclei (NeuN)/CTb/FG triple‐labelled neurons and NeuN/CTb/vesicular glutamate transporter 1(VGLUT1) triple‐labelled neurons in the Vpdm, and more NeuN/BDA/ VGLUT1 triple‐labelled neurons in the cerebellum of rats with UAC than in control rats. The VGLUT1 expression in the Vpdm and cerebellum in the UAC group was higher than that in control rats. These findings indicate an excitatory impact of UAC on the Vpdm‐cerebellum pathway and support the role of occlusion for body posture and balance.
Neurons in the trigeminal mesencephalic nucleus (Vme) have axons that branch peripherally to innervate the orofacial region and project centrally to several motor nuclei in brainstem. The dorsal motor nucleus of vagus nerve (DMV) resides in the brainstem and takes a role in visceral motor function such as pancreatic exocrine secretion. The present study aimed to demonstrate the presence of Vme–DMV circuit, activation of which would elicit a trigeminal neuroendocrine response. A masticatory dysfunctional animal model termed unilateral anterior crossbite (UAC) model created by disturbing the dental occlusion was used. Cholera toxin B subunit (CTb) was injected into the inferior alveolar nerve of rats to help identify the central axon terminals of Vme neurons around the choline acetyltransferase (ChAT) positive motor neurons in the DMV. The level of vesicular glutamate transporter 1 (VGLUT1) expressed in DMV, the level of acetylcholinesterase (AChE) expressed in pancreas, the level of glucagon and insulin expression in islets and serum, and the blood glucose level were detected and compared between UAC and the age matched sham-operation control mice. Data indicated that compared with the controls, there were more CTb/VGLUT1 double labeled axon endings around the ChAT positive neurons in the DMV of UAC groups. Mice in UAC group expressed a higher VGLUT1 protein level in DMV, AChE protein level in pancreas, glucagon and insulin level in islet and serum, and higher postprandial blood glucose level, but lower fasting blood glucose level. All these were reversed at 15-weeks when UAC cessation was performed from 11-weeks (all, P < 0.05). Our findings demonstrated Vme–DMV circuit via which the aberrant occlusion elicited a trigeminal neuroendocrine response such as alteration in the postprandial blood glucose level. Dental occlusion is proposed as a potential therapeutic target for reversing the increased postprandial glucose level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.