We consider the nonlinear elliptic–parabolic boundary value problem involving the Dirichlet-to-Neumann operator of p-Laplace type at the critical Sobolev exponent. We first obtain the existence and asymptotic estimates of the global solution, and the sufficient conditions of finite time blowup of the solution by using the energy method. Second, we improve the regularity of solution by Moser-type iteration. Finally, we analyze the long-time asymptotic behavior of the global solution. Moreover, with the help of the concentration compactness principle, we present a precise description of the concentration phenomenon of the solution in the forward time infinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.