Accurate and effective container throughput forecasting plays an essential role in economic dispatch and port operations, especially in the complex and uncertain context of the global Covid‐19 pandemic. In light of this, this research proposes an effective multi‐step ahead forecasting model called EWT‐TCN‐KMSE. Specifically, we initially use the empirical wavelet transform (EWT) to decompose the original container throughput series into multiple components with varying frequencies. Subsequently, the state‐of‐the‐art temporal convolutional network is utilized to predict the decomposed components individually, during which an improved loss function that combines mean square error (MSE) and kernel trick is employed. Eventually, the deduced prediction results can be obtained by integrating the predicted values of each component. In particular, this research introduces the MIMO (multi‐input and multi‐output) strategy to conduct multi‐step ahead container throughput forecasting. Based on the experiments in Shanghai port and Ningbo‐Zhoushan port, it can be found that the proposed model shows its superiority over benchmark models in terms of accuracy, stability, and significance in container throughput forecasting. Therefore, our proposed model can assist port operators in their daily management and decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.