A 3D photothermal cone was developed to optimize light harvesting via multiple reflections within rational morphology for high-efficiency solar-driven evaporation.
Polymeric dielectrics have attracted intensive attention worldwide because of their huge potential for advanced energy storage capacitors. Thus far, various effective strategies have been developed to improve the inherent low energy densities of polymer dielectrics. However, enhanced energy density is always accompanied by suppressed discharge efficiency, which is detrimental to practical applications and deserves considerable concern. Targeting at achieving simultaneous high energy density and high discharge efficiency, the unique design of asymmetric all-polymer trilayer composite consisting of a transition layer sandwiched by a linear dielectric layer and a nonlinear dielectric layer is herein reported. It is demonstrated that the nonlinear dielectric layer offers high energy density, while the linear dielectric layer provides high discharge efficiency. Especially, the transition layer can effectively homogenize the electric field distribution, resulting in greatly elevated breakdown strength and improved energy density. In particular, a high efficiency of 89.9% along with a high energy density of 12.15 J cm −3 are concurrently obtained. The asymmetric trilayer all-polymer design strategy represents a new way to achieve high-performance dielectric energy storage materials.
The current imbalance in the biogeochemical cycle of nitrogen is as serious as that of carbon. One way to mitigate this problem is through the electrochemical reduction of nitrates under mild conditions, which is an appealing though not fully understood process. Therefore, deeper insight into the electrocatalytic reaction mechanism is needed to optimize this process. Here we thoroughly analyse the adsorption energy of nitrate with DFT calculations on various surface facets of pure Au, Ag, and their near-surface and surface alloys, as the adsorption and subsequent reduction of nitrate are thought to be rate limiting in the electrocatalytic reaction. The observed systematic trends allow prediction of the surface with highest electrocatalytic activity for the reduction of nitrate. This prediction was verified experimentally by depositing sub-monolayer amounts of Ag on polycrystalline Au electrodes. We observe a well-defined volcano curve which correlates the amount of Ag deposited on the surface with the current density at a fixed potential, with the peak activity around 2/3 ML Ag surface coverage. The electrocatalytic activity and stability of the bimetallic Ag-Au systems, found through the interplay of theoretical modelling and empirical observations, serve as a clear example for the rational design of novel catalytic materials and confirm the key role that the adsorption of nitrate plays in the overall nitrate reduction rate.
It is a major challenge to achieve fast charging and high reversible capacity in potassium ion storing carbons. Here, we synthesized sulfur-rich graphene nanoboxes (SGNs) by one-step chemical vapor deposition to deliver exceptional rate and cyclability performance as potassium ion battery and potassium ion capacitor (PIC) anodes. The SGN electrode exhibits a record reversible capacity of 516 mAh g −1 at 0.05 A g −1 , record fast charge capacity of 223 mA h g −1 at 1 A g −1 , and exceptional stability with 89% capacity retention after 1000 cycles. Additionally, the SGN-based PIC displays highly favorable Ragone chart characteristics: 112 Wh kg −1 at 505 W kg −1 and 28 Wh kg −1 at 14618 W kg −1 with 92% capacity retention after 6000 cycles. X-ray photoelectron spectroscopy analysis illustrates a charge storage sequence based primarily on reversible ion binding at the structural−chemical defects in the carbon and the reversible formation of K−S−C and K 2 S compounds. Transmission electron microscopy analysis demonstrates reversible dilation of graphene due to ion intercalation, which is a secondary source of capacity at low voltage. This intercalation mechanism is shown to be stable even at cycle 1000. Galvanostatic intermittent titration technique analysis yields diffusion coefficients from 10 −10 to 10 −12 cm 2 s −1 , an order of magnitude higher than S-free carbons. The direct electroanalytic/analytic comparison indicates that chemically bound sulfur increases the number of reversible ion bonding sites, promotes reaction-controlled over diffusion-controlled kinetics, and stabilizes the solid electrolyte interphase. It is also demonstrated that the initial Coulombic efficiency can be significantly improved by switching from a standard carbonate-based electrolyte to an ether-based one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.