The dynamic exit sign has been verified as an effective means to guide the pedestrian during evacuation. The most critical mechanism with dynamic exit sign guidance is to balance the pedestrian flow on each exit route by optimizing the direction of signs. This paper formulates a bi-level programming model for the direction optimization problem of dynamic signs in buildings. In the bi-level program, the upper-level model is a system optimal model, aiming to minimize the total travel time by optimizing the dynamic sign direction. The lower-level model is a pedestrian assignment model satisfying the dynamic user optimal principle that describes the evacuee exit/route choice behaviour to achieve a balanced pedestrian distribution on the route. A method based on the fundamental diagram, the cell transmission model, and the point-queuing theory is developed to estimate evacuation travel time considering congestion and queuing. A heuristic algorithm is extended to solve the bi-level program. Finally, the proposed methodology is validated with numerical examples. Results reveal that the proposed model can produce the optimal dynamic sign direction, significantly improving the evacuation efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.