Cytoplasmic male sterility (CMS) is a maternally inherited trait that fails to produce functional pollen grains. The CMS system is widely employed to facilitate the utilization of heterosis in major crops. However, little is known about the CMS associated genes in Upland cotton (Gossypium hirsutum). The objective of this study was to compare CMS cotton (CMS-D2) with the cytoplasm from G. harknessii and its isogenic maintainer line with the normal fertile Upland cotton cytoplasm to identify CMS-D2 specific gene(s) and to develop CMSspecific sequence characterized amplified region (SCAR) markers. Based on Southern blot analysis using 10 mitochondrial gene-specific probes (cob, cox2, atp6, atp9, nad3, cox3, atpA, cox1, nad6 and nad9), three probes (cox3, atpA, and nad6) revealed restriction fragment length polymorphisms (RFLP) between the CMS-D2 and its isogenic maintainer line. RT-PCR confirmed that the three genes were differentially expressed between the two lines. These results indicated that there existed structural and expression variations in the three genes when the mitochondrial D2 genome was transferred into Upland cotton. Genome walking and rapid amplification of cDNA ends (RACE) were further performed to analyze the sequences of these genes and their flanking regions. For cox3 and nad6, there was only one different nucleotide each in the gene regions between the two lines. Also some nucleotides upstream of the ATG codon were different. For atpA, the sequences downstream the atpA were significantly different between the two cytoplasmic lines. Furthermore, two nucleotides at the -4 and -5 position from ATG codon were also changed between the two cytoplasms (i.e., CG?AA), and this mutation also exists in RNA sequences. Interestingly, nine nucleotides (ATGCAACTA) were also inserted at the location of 899 bp upstream of ATG codon in the CMS line. The results suggest that the abnormal sequence and expression of atpA gene is associated with CMS expression in Upland cotton. According to the significant different sequences downstream the atpA gene, a CMS-D2 specific SCAR marker was developed. The CMS-specific PCR bands were verified for 10 cultivars containing either normal-or CMS-D2cytoplasm. This will allow quick and reliable Jianyong Wu and Yangcang Gong contributed equally to this work.Electronic supplementary material The online version of this article (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.