The crucial prerequisite for proper biological function is the protein’s ability to establish highly selective interactions with macromolecular partners. A missense mutation that alters the protein binding affinity may cause significant perturbations or complete abolishment of the function, potentially leading to diseases. The availability of computational methods to evaluate the impact of mutations on protein–protein binding is critical for a wide range of biomedical applications. Here, we report an efficient computational approach for predicting the effect of single and multiple missense mutations on protein–protein binding affinity. It is based on a well-tested simulation protocol for structure minimization, modified MM-PBSA and statistical scoring energy functions with parameters optimized on experimental sets of several thousands of mutations. Our simulation protocol yields very good agreement between predicted and experimental values with Pearson correlation coefficients of 0.69 and 0.63 and root-mean-square errors of 1.20 and 1.90 kcal mol–1 for single and multiple mutations, respectively. Compared with other available methods, our approach achieves high speed and prediction accuracy and can be applied to large datasets generated by modern genomics initiatives. In addition, we report a crucial role of water model and the polar solvation energy in estimating the changes in binding affinity. Our analysis also reveals that prediction accuracy and effect of mutations on binding strongly depends on the type of mutation and its location in a protein complex.
In this study, we have performed a comprehensive structural investigation of three major biochemical states of a kinesin complexed with microtubule under the constraint of high-quality cryo-electron-microscopy (EM) maps. In addition to the ADP and ATP state which were captured by X-ray crystallography, we have also modeled the nucleotide-free or APO state for which no crystal structure is available. We have combined flexible fitting of EM maps with regular molecular dynamics simulations, hydrogen-bond analysis, and free energy calculation. Our APO-state models feature a subdomain rotation involving loop L2 and α6 helix of kinesin, and local structural changes in active site similar to a related motor protein, myosin. We have identified a list of hydrogen bonds involving key residues in the active site and the binding interface between kinesin and microtubule. Some of these hydrogen bonds may play an important role in coupling microtubule binding to ATPase activities in kinesin. We have validated our models by calculating the binding free energy between kinesin and microtubule, which quantitatively accounts for the observation of strong binding in the APO and ATP state and weak binding in the ADP state. This study will offer promising targets for future mutational and functional studies to investigate the mechanism of kinesin motors.
Kinesin-microtubule (MT) binding plays a critical role in facilitating and regulating the motor function of kinesins. To obtain a detailed structural and energetic picture of kinesin-MT binding, we performed large-scale computational alanine-scanning mutagenesis based on long-time molecular dynamics (MD) simulations of the kinesin-MT complex in both ADP and ATP states. First, we built three all-atom kinesin-MT models: human conventional kinesin bound to ADP and mouse KIF1A bound to ADP and ATP. Then, we performed 30 ns MD simulations followed by kinesin-MT binding free energy calculations for both the wild type and mutants obtained after substitution of each charged residue of kinesin with alanine. We found that the kinesin-MT binding free energy is dominated by van der Waals interactions and further enhanced by electrostatic interactions. The calculated mutational changes in kinesin-MT binding free energy are in excellent agreement with results of an experimental alanine-scanning study with a root-mean-square error of ~0.32 kcal/mol [Woehlke, G., et al. (1997) Cell 90, 207-216]. We identified a set of important charged residues involved in the tuning of kinesin-MT binding, which are clustered on several secondary structural elements of kinesin (including well-studied loops L7, L8, L11, and L12, helices α4, α5, and α6, and less-explored loop L2). In particular, we found several key residues that make different contributions to kinesin-MT binding in ADP and ATP states. The mutations of these residues are predicted to fine-tune the motility of kinesin by modulating the conformational transition between the ADP state and the ATP state of kinesin.
Myosins are a superfamily of actin-binding motor proteins with significant variations in kinetic properties (such as actin binding affinity) between different isoforms. It remains unknown how such kinetic variations arise from the structural and dynamic tuning of the actin-myosin interface at the amino acid residue level. To address this key issue, we have employed molecular modeling and simulations to investigate, with atomistic details, the isoform dependence of actin-myosin interactions in the rigor state. By combining electron microscopy-based docking with homology modeling, we have constructed three all-atom models for human cardiac α and β and rabbit fast skeletal muscle myosin in complex with three actin subunits in the rigor state. Starting from these models, we have performed extensive all-atom molecular dynamics (MD) simulations (total of 100 ns per system) and then used the MD trajectories to calculate actin-myosin binding free energies with contributions from both electrostatic and nonpolar forces. Our binding calculations are in good agreement with the experimental finding of isoform-dependent differences in actin binding affinity between these myosin isoforms. Such differences are traced to changes in actin-myosin electrostatic interactions (i.e., hydrogen bonds and salt bridges) that are highly dynamic and involve several flexible actin-binding loops. By partitioning the actin-myosin binding free energy to individual myosin residues, we have also identified key myosin residues involved in the actin-myosin interactions, some of which were previously validated experimentally or implicated in cardiomyopathy mutations, and the rest make promising targets for future mutational experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.