The marine stern bearing provides supporting force by lubricating film to minimise the contact friction with the propeller shaft. A model considers local wear and asperity contact is proposed to investigate the mixed lubrication of bearing with misalignment. The finite difference method and over‐relaxation iteration method are employed to solve the average Reynolds equation. The lubrication behaviour includes hydrodynamic pressure, film thickness, contact force and friction coefficient were calculated. The influence of sliding speed, local wear, contact roughness, misalignment angle, elastic deformation and eccentricity ratio is discussed in detail. The critical speed from mixed lubrication to fluid lubrication is obtained by employing the Stribeck curve. Moreover, the dimensionless average hydrodynamic pressure, film thickness and the peak value of contact force are compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.