An emergency response system (ERS) can assist a municipality or government in improving its capabilities to respond urgent and severe events. The responsiveness and effectiveness of an ERS relies greatly on its data acquisition and processing system, which has been evolved with information technology (IT). With the rapid development of sensor networks and cloud computing, the emerging Internet of things (IoT) tends to play an increasing role in ERSs; the networks of sensors, public services, and experts are able to interact with each other and make scientific decisions to the emergencies based on real-time data. When group decision making is required in an ERS, one critical challenge is to obtain the good understanding of massive and diversified data and make consensus group decisions under a high-level stress and strict time constraint. Due to the nature of unorganized data and system complexity, an ERS depends on the perceptions and judgments of experts from different domains; it is challenging to assess the consensus of understanding on the collected data and response plans before appropriate decisions can be reached for emergencies. In this paper, the group decision-making to emergency situations is formulated as a multiple attribute group decision making (MAGDM) problem, the consensus among experts is modeled, and a new methodology is proposed to reach the understanding of emergency response plans with the maximized consensus in course of decision-making. In the implementation, the proposed methodology in integrated with computer programs and encapsulated as a service on the server. The objectives of the new methodology are (i) to enhance the comprehensive group cognizance on emergent scenarios and response plans and (ii) to accelerate the consensus for decision making with an intelligent clustering algorithm, (iii) to adjust the experts' opinions without affecting the reliability of the decision when the consensus cannot be reached from the preliminary decision-making steps. Partitioning Around Medoids (PAM) has been applied as the clustering algorithm, Particle Swarm Optimization (PSO) is deployed to adjust evaluation values automatically. The methodology is applied in a case study to illustrate its effectiveness in converging group opinions and promoting the consensus of understanding on emergencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.