The associate editor coordinating the review of this article and approving it for publication was Lei Jiao.
Gr L Grashof number Ra L Rayleigh number T pAverage temperature at the bottom face of the LED package in package model (Characteristic length (m)
Bond wire damage is one of the most common failure modes of metal-oxide semiconductor field-effect transistor (MOSFET) power devices in wire-welded packaging. This paper proposes a novel bond wire damage detection approach based on two-port network measurement by identifying the MOSFET source parasitic inductance (LS). Numerical calculation shows that the number of bond wire liftoffs will change the LS, which can be used as an effective bond wire damage precursor. Considering a power MOSFET as a two-port network, LS is accurately extracted from frequency domain impedance (Z−parameter) using a vector network analyzer under zero biasing conditions. Bond wire cutoff experiments are employed to validate the proposed approach for bond wire damage detection. The result shows that LS increases with the rising severity of bond wire faults, and even the slight fault shows a high sensitivity, which can be effectively used to quantify the number of bond wire liftoffs of discrete MOSFETs. Meanwhile, the source parasitic resistance (RS) extracted from the proposed two-port network measurement can be used for the bond wire damage detection of high switching frequency silicon carbide MOSFETs. This approach offers an effective quality screening technology for discrete MOSFETs without power on treatment.
With the emerging wide bandgap (WBG) semiconductor development, the increasing power density and efficiency of power electronic converters may cause more switching oscillation, electromagnetic interference noise, and additional power loss, further increasing the probability of device failure. Therefore, determining and quantifying the failure of a metal-oxide-semiconductor-field-effect transistor (MOSFET), which assembled using WBG semiconductor in some applications, is crucial to improving the reliability of a power converter. This study proposes a novel failure quantitative assessment approach based on MOSFET parasitic parameters. According to the two-port network theory, MOSFET is equivalent to some second-order RLC circuits composed of independent inductances, capacitances, and resistances in series. Then, the frequency-domain impedance associated with the physical failure of MOSFET is identified through frequency domain reflectometry. Accelerated aging and bond wires cut-off experiments are employed to obtain various quality states of the MOSFET device. Result shows that the MOSFET quality level and its number of bond wire lift-offs can be quantified effectively. Drain-to-source on-resistance (RDS(on)) that normally represents the MOSFET quality shows a positive linear function relationship on drain-to-source parasitic resistance (RD + RS) during the quality degradation proceeding. This finding matches with the correlation established between RDS (on) and RD + RS in theory. Meanwhile, source parasitic inductance (LS) increases with the severity of bond wires faults, and even the slight fault shows a high sensitivity. The proposed approach would be an effective quality screening technology for power semiconductor devices without power on treatment, which can effectively avoid the impact of junction temperature and test conditions (current and voltage) on test results, and does not need to design additional test circuits. The test frequency range we used in this approach was 10–300 MHz, which to some extent is suitable for providing an on-line quality monitoring technology for high-frequency WBG power devices manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.