High-speed rail (HSR) has brought a number of social and economic benefits, such as shorter trip times for journeys of between one and five hours; safety, security, comfort and on-time commuting for passengers; energy saving and environmental protection; job creation; and encouraging sustainable use of renewable energy and land. The recent development in HSR has seen the pervasive applications of artificial intelligence (AI). This paper first briefly reviews the related disciplines in HSR where AI may play an important role, such as civil engineering, mechanical engineering, electrical engineering and signalling and control. Then, an overview of current AI techniques is presented in the context of smart planning, intelligent control and intelligent maintenance of HSR systems. Finally, a framework of future HSR systems where AI is expected to play a key role is provided.
The stochastic nature of intermittent energy resources has brought significant challenges to the optimal operation of hybrid energy systems. This paper proposes a probabilistic multi-objective evolutionary algorithm based on decomposition (MOEA/D) method with two-step risk-based decision-making strategy to tackle this problem. A scenario based technique is first utilized to generate a stochastic model of the hybrid energy system. Those scenarios divide the feasible domain into several regions. Then, based on the MOEA/D framework, a probabilistic penalty-based boundary intersection (PBI) with gradient descent differential evolution (GDDE) algorithm is proposed to search the optimal scheme from these regions under different uncertainty budgets. To ensure reliable and low risk operation of the hybrid energy system, the Markov inequality is employed to deduce a proper interval of the uncertainty budget. Further, a fuzzy grid technique is proposed to choose the best scheme for real-world applications. Experimental results confirm that the probabilistic adjustable parameters can properly control the uncertainty budget and lower the risk probability. Further, it is also shown that the proposed MOEA/D-GDDE can significantly enhance the optimization efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.