Our
contribution demonstrates that rhodium, an element that has
barely been reported as an active metal for selective dehydrogenation
of alkanes becomes a very active, selective, and robust dehydrogenation
catalyst when exposed to propane in the form of single atoms at the
interface of a solid-supported, highly dynamic liquid Ga–Rh
mixture. We demonstrate that the transition to a fully liquid supported
alloy droplet at Ga/Rh ratios above 80, results in a drastic increase
in catalyst activity with high propylene selectivity. The combining
results from catalytic studies, X-ray photoelectron spectroscopy,
IR-spectroscopy under reaction conditions, microscopy, and density-functional
theory calculations, we obtained a comprehensive microscopy picture
of the working principle of the Ga–Rh supported catalytically
active liquid metal solution.
We report the formation and phase transformation of Bi-containing clusters in GaAs(1-x)Bi(x) epilayers upon annealing. The GaAs(1-x)Bi(x) layers were grown by molecular beam epitaxy under low (220 °C) and high (315 °C) temperatures and subsequently annealed using different temperatures and annealing times. Bi-containing clusters were identified only in the annealed samples that were grown at low temperature, revealing a relatively homogeneous size distribution. Depending on the annealing temperature and duration, the clusters show different sizes ranging from 5 to 20 nm, as well as different crystallographic phase, being coherently strained zincblende GaAs(1-x)Bi(x) (zb Bi-rich Ga(As, Bi)) clusters or rhombohedral pure Bi (rh-Bi) clusters. We found that: (1) the formation of the zb Bi-rich Ga(As, Bi) clusters is driven by the intrinsic tendency of the alloy to phase separately and is mediated by the native point defects present in the low temperature grown epilayers; (2) the phase transformation from zb Bi-rich Ga(As, Bi) to rh-Bi nucleates in zincblende {111} planes and grows until total consumption of Bi in the GaAs matrix. We propose a model accounting for the formation and phase transformation of Bi-containing clusters in this system. Furthermore, our study reveals the possibility to realize self-organized zb Bi-rich Ga(As, Bi) clusters that can exhibit QD-like features.
We investigate the structural properties of GaAsBi layers grown by molecular beam epitaxy on GaAs at substrate temperatures between 220-315 C. Irrespective of the growth temperature, the structures exhibited similar Bi compositions, and good overall crystal quality as deduced from X-Ray diffraction measurements. After thermal annealing at temperatures as low as 500 C, the GaAsBi layers grown at the lowest temperatures exhibited a significant reduction of the lattice constant. The lattice variation was significantly larger for Bi-containing samples than for Bi-free low-temperature GaAs samples grown as a reference. Rutherford backscattering spectrometry gave no evidence of Bi diffusing out of the layer during annealing. However, dark-field and Z-contrast transmission electron microscopy analyses revealed the formation of GaAsBi clusters with a Bi content higher than in the surrounding matrix, as well as the presence of metallic As clusters. The apparent reduction of the lattice constant can be explained by a two-fold process: the diffusion of the excess As incorporated within As Ga antisites to As clusters, and the reduction of the Bi content in the GaAs matrix due to diffusion of Bi to GaAsBi clusters. Diffusion of both As and Bi are believed to be assisted by the native point defects, which are present in the low-temperature as-grown material. V C 2013 AIP Publishing LLC. [http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.