The heavy metal pollution and their fractionations in the surface sediments of Yellow River in Lanzhou Reach was monitored for arsenic (As), lead (Pb), Zinc (Zn), chromium (Cr), copper (Cu) and manganese (Mn) with Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The mean sediment concentrations (in microg/g dry weight) ranged from 13.68-48.11 (As), 26.39-77.66 (Pb), 89.80-201.88 (Zn), 41.49-128.30 (Cr), 29.72-102.22 (Cu), and 773.23-1459.69 (Mn). Spatial distribution showed that each heavy metal concentration remained almost constant in this reach. Correlation coefficients indicated that metals were not strongly associated with sediment sand content or organic carbon content (f(oc)). Labile fractions (exchangeable + carbonate + Fe-Mn oxide) had no significant correlations with sand content or f(oc), either. Results from the present study are useful for understanding heavy metal distributions in a torrential river sediment environment.
Although there are considerable reports of magnetic field effects (MFE) on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF) to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i) CRY1 and CRY2 as putative magnetosensors, (ii) JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii) CYP307A1 in the ecdysone pathway, and (iv) reproduction-related Vitellogenin (Vg). The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF) in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.