For the proposed novel procedure of immobilizing HLW with magnesium potassium phosphate cement (MKPC), Fe2O3 was added as a modifying agent to verify its effect on the solidification form and the immobilization of the radioactive nuclide. The results show that Fe2O3 is inert during the hydration reaction. It slows down the hydration reaction and lowers the heat release rate of the MKPC system, leading to a 3°C-5°C drop in the mixture temperature during hydration. Early comprehensive strength of Fe2O3 containing samples decreased slightly while the long-term strength remained unchanged. For the sintering process, Fe2O3 played a positive role, lowering the melting point and aiding the formation of ceramic structure. CsFe(PO4)2, or CsFePO4, was generated by sintering at 900°C. These products together with the ceramic structure and absorption benefit the immobilization of Cs+. The optimal sintering temperature for heat treatment is 900°C; it makes the solidification form a fired ceramic-like structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.