The damage repair of fused silica based on the CO2 laser repair technique has been successfully applied in high-power laser systems in the controllable nuclear fusion field. However, this kind of repairing technique mainly focuses on large-scale laser damage with sizes larger than 200 μm, but ignores the influence of cluster small-scale damage with sizes smaller than 50 μm. In order to inhibit the growth of small-scale damage and further improve the effect of fused silica damage repair, this paper carried out a study on the repair of fused silica damage using the magnetorheological (MR) removing method. The feasibility of fused silica damage repairing was verified, and the evolution law of the number, morphology, and the surface roughness of small-scale damage were all analyzed. The results showed that the MR removing method was non-destructive compared to traditional repairing technologies. It not only effectively improved the whole damage repairing rate to more than 90%, but it also restored the optical properties and surface roughness of the damaged components in the repairing process. Based on the study of the MR removing repair law, a combined repairing process of 4 μm MR removal and 700 nm computer controlled optical surfacing (CCOS) removal is proposed. A typical fused silica element was experimentally repaired to verify the process parameters. The repairing rate of small-scale damage was up to 90.4%, and the surface roughness was restored to the level before repairing. The experimental results validate the effectiveness and feasibility of the combined repairing process. This work provides an effective method for the small-scale damage repairing of fused silica components.
The magnetorheological (MR) repair method can effectively repair the small-scale damage of fused silica optics and further improve the laser-induced damage threshold of fused silica optics. However, at present, the rules of MR repair of small-scale damage of fused silica are not clear and cannot provide further guidance for the repair process. In this paper, the fused silica damage samples were repaired layer by layer by the MR method. The number and size changes of all the surface damage, the morphology, the fluorescence area distribution, and photothermal-absorption value of a single typical small-scale damage were measured. Through dark field scattering imaging, it is found that when the repair depth is 5 μm, the repair completion rate of damage with a transverse size less than 50 μm can reach 44%, and the repair efficiency decreases gradually with the repair process. Focusing on the whole repair process of a single typical, small-scale damage—due to the flexible shear removal mechanism of the MR method—the repair process of damage can be divided into three stages, which as a whole is a top-down, from outside to inside process. The first stage is the process of removing the surface of the damage layer by layer. In this process, MR fluid will introduce pollution to the inside of the damage. In the second stage, MR fluid begins to repair the inside of the damage. In the third stage, the MR ribbon completely covers the inside of the damage, and the repair effect is the most obvious. The measurement results of photothermal absorption and fluorescence area distribution of damage confirm this process. The photothermal absorption value and fluorescence area distribution of damage do not simply decrease with the repair process. On the contrary, they gradually increase first, and then decrease significantly when the damage depth reaches less than 1 μm. As the thickness of the MR ribbon is 1 μm, the reduction in the photothermal absorption value and fluorescence area of the damage is due to the process of repairing the inside of the damage. The results show that the absorbent impurities inside the small-scale damage of fused silica are the main factor affecting the performance. The key to repairing the small-scale damage of fused silica by the MR method is that the damaged interior must be repaired effectively. This paper outlines the MR repair method of small-scale damage of fused silica, which is of great significance to optimize the MR repair process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.