Environmental managers and policymakers increasingly discuss trade-offs between ecosystem services (ESs). However, few studies have used nonlinear models to provide scenario-specific land-use planning. This study determined the effects of different future land use/land cover (LULC) scenarios on ESs in the Yili River Valley, China, and analyzed the trade-offs and synergistic response characteristics. We simulated land-use changes in the Yili River Valley during 2020–2030 under three different scenarios using a patch-generating land-use simulation (PLUS) model—business as usual (BAU), economic development (ED), and ecological conservation (EC). Subsequently, we evaluated the water yield (WY), carbon storage (CS), soil retention (SR), and nutrient export (NE) ESs by combining the PLUS and integrated valuation of ecosystem services and trade-offs (InVEST) models, thus exploring multiple trade-offs among these four ESs at a regional scale. For the BAU scenario, there are some synergistic effects between WY and SR in the Yili River Valley, in addition to significant trade-off effects between CS and NE. For the ED scenario, the rapid expansion of cropland and constructed land is at the expense of forested grassland, leading to a significant decline in ESs. For the EC scenario, the model predicted that the cumulative regional net future carbon storage, cumulative water retention, and cumulative soil conservation would all increase due to ecological engineering and the revegetation of riparian zones and that formerly steep agricultural land can be effective in improving ESs. Meanwhile, the trade-off effect would be significantly weakened between CS and NE. These results can inform decision makers on specific sites where ecological engineering is implemented. Our findings can enhance stakeholders’ understanding of the interactions between ESs indicators in different scenarios.
China’s double carbon initiative faces huge challenges, and understanding the carbon sequestration service of terrestrial ecosystems under future interannual regional land use change is important to respond to China’s carbon policy effectively. Previous studies have recognized the important impact of land use/land cover (LULC) planning on carbon sequestration in terrestrial ecosystem services (ESs). However, exploring trends in carbon sequestration under sustainable development scenarios that combine economic and ecological development, particularly the mechanisms that balance the supply and demand of carbon sequestration, still requires in-depth exploration in different geographical contexts. In this study, we present the LULC simulation framework from 2000 to 2030 for four different development scenarios in the Xinjiang region, located in an important Belt and Road region, including business as usual (BAU), rapid economic development (RED), ecological land protection (ELP), and sustainable development with both economic and ecological development (SD). Our results suggest that both the supply and demand of carbon stock in Xinjiang will increase in 2025 and 2030, with the demand exceeding the supply. However, our scenario planning mitigates the supply and demand deficit situation for carbon sequestration in the context of future cropland expansion in different scenarios. In summary, our study’s findings will enrich the study of carbon sequestration under future scenarios in the Belt and Road region. Xinjiang should pay more attention to the dynamic changes in landscape type structure and its carbon storage supply and demand caused by cultivated land expansion. Among the four scenarios, the spatial difference between carbon storage supply and demand based on the SD scenario is the smallest, which is more in line with the high-quality development of regional ecological security in Xinjiang.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.