Time-of-flight three-dimensional imaging is an important tool for applications such as object recognition and remote sensing. Conventional time-of-flight three-dimensional imaging systems frequently use a raster scanned laser to measure the range of each pixel in the scene sequentially. Here we show a modified time-of-flight three-dimensional imaging system, which can use compressed sensing techniques to reduce acquisition times, whilst distributing the optical illumination over the full field of view. Our system is based on a single-pixel camera using short-pulsed structured illumination and a high-speed photodiode, and is capable of reconstructing 128 × 128-pixel resolution three-dimensional scenes to an accuracy of ∼3 mm at a range of ∼5 m. Furthermore, by using a compressive sampling strategy, we demonstrate continuous real-time three-dimensional video with a frame-rate up to 12 Hz. The simplicity of the system hardware could enable low-cost three-dimensional imaging devices for precision ranging at wavelengths beyond the visible spectrum.
Single-pixel imaging is an alternate imaging technique particularly well-suited to imaging modalities such as hyper-spectral imaging, depth mapping, 3D profiling. However, the single-pixel technique requires sequential measurements resulting in a trade-off between spatial resolution and acquisition time, limiting real-time video applications to relatively low resolutions. Compressed sensing techniques can be used to improve this trade-off. However, in this low resolution regime, conventional compressed sensing techniques have limited impact due to lack of sparsity in the datasets. Here we present an alternative compressed sensing method in which we optimize the measurement order of the Hadamard basis, such that at discretized increments we obtain complete sampling for different spatial resolutions. In addition, this method uses deterministic acquisition, rather than the randomized sampling used in conventional compressed sensing. This so-called ‘Russian Dolls’ ordering also benefits from minimal computational overhead for image reconstruction. We find that this compressive approach performs as well as other compressive sensing techniques with greatly simplified post processing, resulting in significantly faster image reconstruction. Therefore, the proposed method may be useful for single-pixel imaging in the low resolution, high-frame rate regime, or video-rate acquisition.
Single-pixel imaging uses a single-pixel detector, rather than a focal plane detector array, to image a scene. It provides advantages for applications such as multi-wavelength, three-dimensional imaging. However, low frame rates have been a major obstacle inhibiting the use of computational ghost imaging technique in wider applications since its invention one decade ago. To address this problem, a computational ghost imaging scheme, which utilizes an LED-based, high-speed illumination module is presented in this work. At 32 × 32 pixel resolution, the proof-of-principle system achieved continuous imaging with 1000 fps frame rate, approximately two orders larger than those of other existing ghost imaging systems. The proposed scheme provides a cost-effective and high-speed imaging technique for dynamic imaging applications.
Single-pixel cameras provide a means to perform imaging at wavelengths where pixelated detector arrays are expensive or limited. The image is reconstructed from measurements of the correlation between the scene and a series of masks. Although there has been much research in the field in recent years, the fact that the signal-to-noise ratio (SNR) scales poorly with increasing resolution has been one of the main limitations prohibiting the uptake of such systems. Microscanning is a technique that provides a final higher resolution image by combining multiple images of a lower resolution. Each of these low resolution images is subject to a sub-pixel sized lateral displacement. In this work we apply a digital microscanning approach to an infrared single-pixel camera. Our approach requires no additional hardware, but is achieved simply by using a modified set of masks. Compared to the conventional Hadamard based single-pixel imaging scheme, our proposed framework improves the SNR of reconstructed images by ∼ 50 % for the same acquisition time. In addition, this strategy also provides access to a stream of low-resolution 'preview' images throughout each high-resolution acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.