In this paper, we propose a novel transductive learning framework named manifold-ranking based image retrieval (MRBIR). Given a query image, MRBIR first makes use of a manifold ranking algorithm to explore the relationship among all the data points in the feature space, and then measures relevance between the query and all the images in the database accordingly, which is different from traditional similarity metrics based on pair-wise distance. In relevance feedback, if only positive examples are available, they are added to the query set to improve the retrieval result; if examples of both labels can be obtained, MRBIR discriminately spreads the ranking scores of positive and negative examples, considering the asymmetry between these two types of images. Furthermore, three active learning methods are incorporated into MRBIR, which select images in each round of relevance feedback according to different principles, aiming to maximally improve the ranking result. Experimental results on a general-purpose image database show that MRBIR attains a significant improvement over existing systems from all aspects.
An image retrieval framework that integrates efficient region-based representation in terms of storage and complexity and effective on-line learning capability is proposed. The framework consists of methods for region-based image representation and comparison, indexing using modified inverted files, relevance feedback, and learning region weighting. By exploiting a vector quantization method, both compact and sparse (vector) region-based image representations are achieved. Using the compact representation, an indexing scheme similar to the inverted file technology and an image similarity measure based on Earth Mover's Distance are presented. Moreover, the vector representation facilitates a weighted query point movement algorithm and the compact representation enables a classification-based algorithm for relevance feedback. Based on users' feedback information, a region weighting strategy is also introduced to optimally weight the regions and enable the system to self-improve. Experimental results on a database of 10,000 general-purposed images demonstrate the efficiency and effectiveness of the proposed framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.