Recently, human behavior sensing based on WiFi channel state information has drawn more attention in the ubiquitous computing field because it can provide accurate information about the target under a device-free scheme. This paper concentrates on user authentication applications using channel state information. We investigate state-of-the-art studies and survey their characteristics. First, we introduce the concept of channel state information and outline the fundamental principle of user authentication. These systems measure the dynamic channel state information profile and implement user authentication by exploring the channel state information variation caused by users because each user generates unique channel state information fluctuations. Second, we elaborate on signal processing approaches, including signal selection and preprocessing, feature extraction, and classification methods. Third, we thoroughly investigate the latest user authentication applications. Specifically, we analyze these applications from typical human action, including gait, activity, gesture, and stillness. Finally, we provide a comprehensive discussion of user authentication and conclude the paper by presenting some open issues, research directions, and possible solutions.
With the increasing demand for human-computer interaction and health monitoring, human behavior recognition with device-free patterns has attracted extensive attention. The fluctuations of the Wi-Fi signal caused by human actions in a Wi-Fi coverage area can be used to precisely identify the human skeleton and pose, which effectively overcomes the problems of the traditional solution. Although many promising results have been achieved, no survey summarizes the research progress. This paper aims to comprehensively investigate and analyze the latest applications of human behavior recognition based on channel state information (CSI) and the human skeleton. First, we review the human profile perception and skeleton recognition progress based on wireless perception technologies. Second, we summarize the general framework of precise pose recognition, including signal preprocessing methods, neural network models, and performance results. Then, we classify skeleton model generation methods into three categories and emphasize the crucial difference among these typical applications. Furthermore, we discuss two aspects, such as experimental scenarios and recognition targets. Finally, we conclude the paper by summarizing the issues in typical systems and the main research directions for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.