It is known that social stress could alter oxytocin (OT) and arginine‐vasopressin (AVP) expression in specific regions of brains which regulate the aggressive behavior of small rodents, but the effects of density‐induced social stress are still unknown. Brandt's voles (Lasiopodomys brandtii) are small herbivores in the grassland of China, but the underlying neurological mechanism of population regulation is still unknown. We tested the effects of housing density of Brandt's voles on OT/AVP system with physical contact (allowing aggression) and without physical contact (not allowing aggression) under laboratory conditions. Then, we tested the effects of paired‐aggression (no density effect) of Brandt's voles on OT/AVP system under laboratory conditions. We hypothesized that high density would increase aggression among animals which would then increase AVP but reduce OT in brains of animals. Our results showed that high housing density induced more aggressive behavior. We found high‐density‐induced social stress (with or without physical contact) and direct aggression significantly increased expression of mRNA and protein of AVP and its receptor, but decreased expression of mRNA and protein of OT and its receptor in specific brain regions of voles. The results suggest that density‐dependent change of OT/AVP systems may play a significant role in the population regulation of small rodents by altering density‐dependent aggressive behavior.
BackgroundBupleurum yinchowense Shan et Y. Li is widely used to treat depressive and anxiety disorders for hundreds of years in China. Total saikosaponins (TSS) is the major ingredient of Bupleurum yinchowense. A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and subsequent mammalian target of rapamycin (mTOR) signaling is responsible for synaptic maturation and may contribution to the synaptic alteration underlying depression. The aim of the study was to investigate the antidepressant-like and anxiolytic effect of TSS in chronic corticosterone-treated mice. The effect of TSS on synaptic proteins expression and AMPA receptor-mTOR signaling pathway alteration was also evaluated.MethodsDose-response effect of TSS (12.5, 25, 50 mg/kg) was investigated in forced swim test (FST) in ICR male mice. In the chronic corticosterine-treated model, TSS was given intragastrically once a day for 2 weeks and continued through the behavior testing period. Behavior tests and AMPA receptor related signaling pathway were investigated.ResultsTSS (25 and 50 mg/kg) decreased the immobility time in the FST when compared with the control group. TSS (25 mg/kg) showed antidepressant-like and anxiolytic effects in the chronic corticosterone treatment model in mice. TSS increased hippocampal synaptic proteins (synapsin-1 and postsynaptic density protein 95) expression. Immunohistochemistry analysis showed that TSS significantly increased the synapsin-1 expression in CA3 of hippocampus. TSS also increased hippocampal phosphorylation expression of GluR1 Ser 845 (AMPA receptor subunit) and its downstream regulators extracellular signaling-regulated kinase (ERK), protein kinase B (Akt) and mTOR.ConclusionTSS produces antidepressant-like and anxiolytic effects and increases synaptic proteins expression which may be mediated by induction of AMPA receptor and subsequent mTOR signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.