A neurobiological model for pair-bond formation has emerged from studies in monogamous rodents. The neuropeptides oxytocin and vasopressin contribute to the processing of social cues necessary for individual recognition. Mesolimbic dopamine is involved in reinforcement and reward learning. Concurrent activation of neuropeptide and dopamine receptors in the reward centers of the brain during mating results in a conditioned partner preference, observed as a pair bond. Differential regulation of neuropeptide receptor expression may explain species differences in the ability to form pair bonds. These and other studies discussed here have intriguing implications for the neurobiology of social attachment in our own species.
The involvement of dopamine within the nucleus accumbens in the formation and maintenance of pair bonds was assessed in a series of experiments using the monogamous prairie vole. We show that dopamine transmission that promotes pair bond formation occurs within the rostral shell of the nucleus accumbens, but not in its core or caudal shell. Within this specific brain region, D1- and D2-like receptor activation produced opposite effects: D1-like activation prevented pair bond formation, whereas D2-like activation facilitated it. After extended cohabitation with a female, male voles showed behavior indicative of pair bond maintenance-namely, selective aggression towards unfamiliar females. These voles also showed a significant upregulation in nucleus accumbens D1-like receptors, and blockade of these receptors abolished selective aggression. Thus, neuroplastic reorganization of the nucleus accumbens dopamine system is responsible for the enduring nature of monogamous pair bonding. Finally, we show that this system may also contribute to species-specific social organization.
Oxytocin, a neurohypophyseal hormone, has been traditionally considered essential for mammalian reproduction. In addition to uterine contractions during labor and milk ejection during nursing, oxytocin has been implicated in anterior pituitary function, paracrine effects in the testis and ovary, and the neural control of maternal and sexual behaviors. To determine the essential role(s) of oxytocin in mammalian reproductive function, mice deficient in oxytocin have been generated using embryonic stem cell technology. A deletion of exon 1 encoding the oxytocin peptide was generated in embryonic stem cells at a high frequency and was successfully transmitted in the germ line. Southern blot analysis of genomic DNA from homozygote offspring and in situ hybridization with an exonic probe 3' of the deletion failed to detect any oxytocin or neurophysin sequences, respectively, confirming that the mutation was a null mutation.
The molecular mechanisms underlying the evolution of complex behaviour are poorly understood. The mammalian genus Microtus provides an excellent model for investigating the evolution of social behaviour. Prairie voles (Microtus ochrogaster) exhibit a monogamous social structure in nature, whereas closely related meadow voles (Microtus pennsylvanicus) are solitary and polygamous. In male prairie voles, both vasopressin and dopamine act in the ventral forebrain to regulate selective affiliation between adult mates, known as pair bond formation, as assessed by partner preference in the laboratory. The vasopressin V1a receptor (V1aR) is expressed at higher levels in the ventral forebrain of monogamous than in promiscuous vole species, whereas dopamine receptor distribution is relatively conserved between species. Here we substantially increase partner preference formation in the socially promiscuous meadow vole by using viral vector V1aR gene transfer into the ventral forebrain. We show that a change in the expression of a single gene in the larger context of pre-existing genetic and neural circuits can profoundly alter social behaviour, providing a potential molecular mechanism for the rapid evolution of complex social behaviour.
The formation of enduring relationships between adult mates (i.e., pair bonds) is an integral aspect of human social behavior and has been implicated in both physical and psychological health. However, due to the inherent complexity of these bonds and the relative rarity with which they are formed in other mammalian species, we know surprisingly little about their underlying neurobiology. Over the past few decades, the prairie vole (Microtus ochrogaster) has emerged as an animal model of pair bonding. Research in this socially monogamous rodent has provided valuable insights into the neurobiological mechanisms that regulate pair bonding behaviors. Here, we review these studies and discuss the neural regulation of three behaviors inherent to pair bonding: the formation of partner preferences, the subsequent development of selective aggression toward unfamiliar conspecifics, and the bi-parental care of young. We focus on the role of vasopressin, oxytocin, and dopamine in the regulation of these behaviors, but also discuss the involvement of other neuropeptides, neurotransmitters, and hormones. These studies may not only contribute to the understanding of pair bonding in our own species, but may also offer insight into the underlying causes of social deficits noted in several mental health disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.