The cerebellum is essential for fine motor control of movement and posture, and its dysfunction disrupts balance and impairs control of speech, limb and eye movements. The developing cerebellum consists mainly of three types of neuronal cells: granule cells in the external germinal layer, Purkinje cells, and neurons of the deep nuclei. The molecular mechanisms that underlie the specific determination and the differentiation of each of these neuronal subtypes are unknown. Math1, the mouse homologue of the Drosophila gene atonal, encodes a basic helix-loop-helix transcription factor that is specifically expressed in the precursors of the external germinal layer and their derivatives. Here we report that mice lacking Math1 fail to form granule cells and are born with a cerebellum that is devoid of an external germinal layer. To our knowledge, Math1 is the first gene to be shown to be required in vivo for the genesis of granule cells, and hence the predominant neuronal population in the cerebellum.
Oxytocin, a neurohypophyseal hormone, has been traditionally considered essential for mammalian reproduction. In addition to uterine contractions during labor and milk ejection during nursing, oxytocin has been implicated in anterior pituitary function, paracrine effects in the testis and ovary, and the neural control of maternal and sexual behaviors. To determine the essential role(s) of oxytocin in mammalian reproductive function, mice deficient in oxytocin have been generated using embryonic stem cell technology. A deletion of exon 1 encoding the oxytocin peptide was generated in embryonic stem cells at a high frequency and was successfully transmitted in the germ line. Southern blot analysis of genomic DNA from homozygote offspring and in situ hybridization with an exonic probe 3' of the deletion failed to detect any oxytocin or neurophysin sequences, respectively, confirming that the mutation was a null mutation.
The cerebellum consists of a highly organized set of folia that are largely generated postnatally during expansion of the granule cell precursor (GCP)pool. Since the secreted factor sonic hedgehog (Shh) is expressed in Purkinje cells and functions as a GCP mitogen in vitro, it is possible that Shh influences foliation during cerebellum development by regulating the position and/or size of lobes. We studied how Shh and its transcriptional mediators,the Gli proteins, regulate GCP proliferation in vivo, and tested whether they influence foliation. We demonstrate that Shh expression correlates spatially and temporally with foliation. Expression of the Shh target gene Gli1 is also highest in the anterior medial cerebellum, but is restricted to proliferating GCPs and Bergmann glia. By contrast, Gli2is expressed uniformly in all cells in the developing cerebellum except Purkinje cells and Gli3 is broadly expressed along the anteroposterior axis. Whereas Gli mutants have a normal cerebellum, Gli2 mutants have greatly reduced foliation at birth and a decrease in GCPs. In a complementary study using transgenic mice, we show that overexpressing Shh in the normal domain does not grossly alter the basic foliation pattern, but does lead to prolonged proliferation of GCPs and an increase in the overall size of the cerebellum. Taken together, these studies demonstrate that positive Shh signaling through Gli2 is required to generate a sufficient number of GCPs for proper lobe growth.
The mammalian A-type cyclin family consists of two members, cyclin A1 (encoded by Ccna1) and cyclin A2 (encoded by Ccna2). Cyclin A2 promotes both G1/S and G2/M transitions, and targeted deletion of Ccna2 in mouse is embryonic lethal3. Cyclin A1 is expressed in mice exclusively in the germ cell lineage and is expressed in humans at highest levels in the testis and certain myeloid leukaemia cells. To investigate the role of cyclin A1 and possible redundancy among the cyclins in vivo, we generated mice bearing a null mutation of Ccna1. Ccna1-/- males were sterile due to a block of spermatogenesis before the first meiotic division, whereas females were normal. Meiosis arrest in Ccna1-/- males was associated with increased germ cell apoptosis, desynapsis abnormalities and reduction of Cdc2 kinase activation at the end of meiotic prophase. Cyclin A1 is therefore essential for spermatocyte passage into the first meiotic division in male mice, a function that cannot be complemented by the concurrently expressed B-type cyclins.
FKBP12, a cis-trans prolyl isomerase that binds the immunosuppressants FK506 and rapamycin, is ubiquitously expressed and interacts with proteins in several intracellular signal transduction systems. Although FKBP12 interacts with the cytoplasmic domains of type I receptors of the transforming growth factor-beta (TGF-beta) superfamily in vitro, the function of FKBP12 in TGF-beta superfamily signalling is controversial. FKBP12 also physically interacts stoichiometrically with multiple intracellular calcium release channels including the tetrameric skeletal muscle ryanodine receptor (RyR1). In contrast, the cardiac ryanodine receptor, RyR2, appears to bind selectively the FKBP12 homologue, FKBP12.6. To define the functions of FKBP12 in vivo, we generated mutant mice deficient in FKBP12 using embryonic stem (ES) cell technology. FKBP12-deficient mice have normal skeletal muscle but have severe dilated cardiomyopathy and ventricular septal defects that mimic a human congenital heart disorder, noncompaction of left ventricular myocardium. About 9% of the mutants exhibit exencephaly secondary to a defect in neural tube closure. Physiological studies demonstrate that FKBP12 is dispensable for TGF-beta-mediated signalling, but modulates the calcium release activity of both skeletal and cardiac ryanodine receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.