In this study, we innervated bio-inspired proprioception into a soft hand, facilitating a robust perception of textures and object shapes. The tendon-driven soft finger with three joints, inspired by the human finger, was detailed. With tension sensors embedded in the tendon that simulate the Golgi tendon organ of the human body, 17 types of textures can be identified under uncertain rotation angles and actuator displacements. Four classifiers were used and the highest identification accuracy was 98.3%. A three-fingered soft hand based on the bionic finger was developed. Its basic grasp capability was tested experimentally. The soft hand can distinguish 10 types of objects that vary in shape with top grasp and side grasp, with the highest accuracies of 96.33% and 96.00%, respectively. Additionally, for six objects with close shapes, the soft hand obtained an identification accuracy of 97.69% with a scan-grasp method. This study offers a novel bionic solution for the texture identification and object recognition of soft manipulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.