The COVID-19 has become a pandemic. The timing and nature of the COVID-19 pandemic response and control varied among the regions and from one country to the other, and their role in affecting the spread of the disease has been debated. The focus of this work is on the early phase of the disease when control measures can be most effective. We proposed a modified susceptible-exposed-infected-removed model (SEIR) model based on temporal moving windows to quantify COVID-19 transmission patterns and compare the temporal progress of disease spread in six representative regions worldwide: three Chinese regions (Zhejiang, Guangdong and Xinjiang) vs. three countries (South Korea, Italy and Iran). It was found that in the early phase of COVID-19 spread the disease follows a certain empirical law that is common in all regions considered. Simulations of the imposition of strong social distancing measures were used to evaluate the impact that these measures might have had on the duration and severity of COVID-19 outbreaks in the three countries. Measure-dependent transmission rates followed a modified normal distribution (empirical law) in the three Chinese regions. These rates responded quickly to the launch of the 1
st
-level Response to Major Public Health Emergency in each region, peaking after 1–2 days, reaching their inflection points after 10–19 days, and dropping to zero after 11–18 days since the 1
st
-level response was launched. By March 29
th
, the mortality rates were 0.08% (Zhejiang), 0.54% (Guangdong) and 3.95% (Xinjiang). Subsequent modeling simulations were based on the working assumption that similar infection transmission control measures were taken in South Korea as in Zhejiang on February 25
th
, in Italy as in Guangdong on February 25
th
, and in Iran as in Xinjiang on March 8
th
. The results showed that by June 15
th
the accumulated infection cases could have been reduced by 32.49% (South Korea), 98.16% (Italy) and 85.73% (Iran). The surface air temperature showed stronger association with transmission rate of COVID-19 than surface relative humidity. On the basis of these findings, disease control measures were shown to be particularly effective in flattening and shrinking the COVID-10 case curve, which could effectively reduce the severity of the disease and mitigate medical burden. The proposed empirical law and the SEIR-temporal moving window model can also be used to study infectious disease outbreaks worldwide.
Aflatoxins (AFs) are secondary metabolites that represent serious threats to human and animal health. They are mainly produced by strains of the saprophytic fungus Aspergillus flavus, which are abundantly distributed across agricultural commodities. AF contamination is receiving increasing attention by researchers, food producers, and policy makers in China, and several interesting review papers have been published, that mainly focused on occurrences of AFs in agricultural commodities in China. The goal of this review is to provide a wider scale and up-to-date overview of AF occurrences in different agricultural products and of the distribution of A. flavus across different food and feed categories and in Chinese traditional herbal medicines in China, for the period 2000–2020. We also highlight the health impacts of chronic dietary AF exposure, the recent advances in biological AF mitigation strategies in China, and recent Chinese AF standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.