Carbon dots (CDs) find widespread attention due to their remarkable fluorescent and electronic properties. However, aggregation‐caused quenching currently limits the application of CDs in colored displays. The construction of CDs with color‐tunable solid‐state fluorescence (SSF) is rarely reported, since the preparation of SSF CDs is technically challenging. Herein, through surface ligand modulation, SSF CDs with an emission‐color span of almost 300 nm (from blue to deep red) were obtained. In‐depth structure‐property studies reveal that intra‐ and inter‐molecular hydrogen‐bonding inside SSF CDs provokes the emission properties in the aggregated state. Photodynamic characterizations demonstrate emission wavelengths can be switched smoothly by deliberately altering conjugation ability between substituent ligands and CDs core. Three‐dimensional printing patterning is used to create a range of emissive objects, demonstrating the commercial potential for use in optical lamps.
Carbon dots (CDs) are widely utilized in sensing, energy storage, and catalysis due to their excellent optical, electrical and semiconducting properties. However, attempts to optimize their optoelectronic performance through high-order manipulation have met with little success to date. In this study, through efficient packing of individual CDs in two-dimensions, the synthesis of flexible CDs ribbons is demonstrated technically. Electron microscopies and molecular dynamics simulations, show the assembly of CDs into ribbons results from the tripartite balance of 𝝅-𝝅 attractions, hydrogen bonding, and halogen bonding forces provided by the superficial ligands. The obtained ribbons are flexible and show excellent stability against UV irradiation and heating. CDs ribbons offer outstanding performance as active layer material in transparent flexible memristors, with the developed devices providing excellent data storage, retention capabilities, and fast optoelectronic responses. A memristor device with a thickness of 8 µm shows good data retention capability even after 10 4 cycles of bending. Furthermore, the device functions effectively as a neuromorphic computing system with integrated storage and computation capabilities, with the response speed of the device being less than 5.5 ns. These properties create an optoelectronic memristor with rapid Chinese character learning capability. This work lays the foundation for wearable artificial intelligence.
Carbon dots (CDs) find widespread attention due to their remarkable fluorescent and electronic properties. However, aggregation-caused quenching currently limits the application of CDs in colored displays. The construction of CDs with color-tunable solid-state fluorescence (SSF) is rarely reported, since the preparation of SSF CDs is technically challenging. Herein, through surface ligand modulation, SSF CDs with an emission-color span of almost 300 nm (from blue to deep red) were obtained. In-depth structure-property studies reveal that intra-and inter-molecular hydrogenbonding inside SSF CDs provokes the emission properties in the aggregated state. Photodynamic characterizations demonstrate emission wavelengths can be switched smoothly by deliberately altering conjugation ability between substituent ligands and CDs core. Three-dimensional printing patterning is used to create a range of emissive objects, demonstrating the commercial potential for use in optical lamps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.