Purpose -The objective of this paper is to propose a consumer-behavior-based intelligence (CBBI) model to identify market structure so as to monitor product competition. Competitive intelligence extracted from Chinese e-business clickstream data is exploited to examine the relevance of consumers' heterogeneous behavioral feedback, namely, click, tag-into-favorite, time-of-browsing, add-into-cart, and remove-from-cart, to visualize the competitive product market structure and to predict product-level sales. Design/methodology/approach -Our proposed CBBI model consists of visualization and prediction, which explore e-business clickstream data. We conduct the visualization and segmentation of market structure in the form of a perceptual map by employing K-means clustering algorithm and multidimensional scaling technique. Concurrently, we developed an updated Bayesian linear regression (BLR) to predict product-level sales by considering consumers' heterogeneous feedback. Our updated BLR specifically integrated the estimated knowledge of the previous periods to verify whether product sales are period-dependent due to the consumer memory effect in e-commerce, improving the conventional BLR of diffuse prior distribution setup in terms of mean absolute error (MAE) and root mean squared error (RMSE). Findings -Considering the performance of consumers' heterogeneous actions, the present research visualized three different segments of the competitive market structure in a perceptual map, and its horizontal axis is shown as a signal of the ascending trend of product sales. The previous five-day period was ascertained to be the best size of a time window for the consumer memory effect on product sales prediction. This hypothesis is supported by the concept that product sales are period-dependent. The results of the proposed updated BLR indicate that consumer tag-into-favorite, add-into-cart, and remove-from-cart feedback have positive impacts on product-level sales while click and time-of-browsing have the opposite effect. Originality/value -While the identified competitive product market structure elaborates consumer heterogeneous feedback toward alternative product choices, this paper contributes by extending those homogeneous consumer preferences-related marketing studies. The perceptual map's configuration in respect to period-dependent product sales facilitates the effective inclusion of consumer behavior application in product sales prediction research in e-commerce. This paper helps sellers and retailers better comprehend the impacts of heterogeneous feedback and the consumer memory effect on the degree of competition in the form of
During the COVID-19 pandemic, business managers are facing many challenges from a severe challenge. Many organizations have changed their original management mode and organizational behavior to improve employees’ organizational citizenship behavior, thus reducing their sense of anxiety and incapability. Thereinto, job performance of the employees also affects the growth and development of the organization. To explore how to fragment employees’ positive psychology and job performance, this study discusses the influence on employees’ subjective wellbeing and job performance from relevant factors at the organizational and individual levels. Also, to explore the influence of organizational support and occupation self-efficacy on job performance and the mediating role of subjective wellbeing during COVID-19, a total of 618 valid questionnaires were collected from all walks of life in 2020. Hypotheses were tested by structural equation modeling and Bootstrap technology. The results show that: (1) Professional self-efficacy and subjective wellbeing have a significant positive impact on job performance; (2) Subjective wellbeing plays a complete mediating role between organizational support and job performance, and subjective wellbeing plays a partial mediating role between professional self-efficacy and job performance; (3) Compared with the sense of organizational support, the positive effect of self-efficacy on job performance is more significant.
PurposeA good decision support system for credit scoring enables telecom operators to measure the subscribers' creditworthiness in a fine-grained manner. This paper aims to propose a robust credit scoring system by leveraging latent information embedded in the telecom subscriber relation network based on multi-source data sources, including telecom inner data, online app usage, and offline consumption footprint.Design/methodology/approachRooting from network science, the relation network model and singular value decomposition are integrated to infer different subscriber subgroups. Employing the results of network inference, the paper proposed a network-aware credit scoring system to predict the continuous credit scores by implementing several state-of-art techniques, i.e. multivariate linear regression, random forest regression, support vector regression, multilayer perceptron, and a deep learning algorithm. The authors use a data set consisting of 926 users of a Chinese major telecom operator within one month of 2018 to verify the proposed approach.FindingsThe distribution of telecom subscriber relation network follows a power-law function instead of the Gaussian function previously thought. This network-aware inference divides the subscriber population into a connected subgroup and a discrete subgroup. Besides, the findings demonstrate that the network-aware decision support system achieves better and more accurate prediction performance. In particular, the results show that our approach considering stochastic equivalence reveals that the forecasting error of the connected-subgroup model is significantly reduced by 7.89–25.64% as compared to the benchmark. Deep learning performs the best which might indicate that a non-linear relationship exists between telecom subscribers' credit scores and their multi-channel behaviours.Originality/valueThis paper contributes to the existing literature on business intelligence analytics and continuous credit scoring by incorporating latent information of the relation network and external information from multi-source data (e.g. online app usage and offline consumption footprint). Also, the authors have proposed a power-law distribution-based network-aware decision support system to reinforce the prediction performance of individual telecom subscribers' credit scoring for the telecom marketing domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.