ObjectiveWe aimed to evaluate the causal effect of type 2 diabetes mellitus (T2DM) and glycemic traits on the risk of a wide range of cardiovascular diseases (CVDs) and lipid traits using Mendelian randomization (MR).MethodsGenetic variants associated with T2DM, fasting glucose, fasting insulin, and hemoglobin A1c were selected as instrumental variables to perform both univariable and multivariable MR analyses.ResultsIn univariable MR, genetically predicted T2DM was associated with higher odds of peripheral artery disease (pooled odds ratio (OR) =1.207, 95% CI: 1.162-1.254), myocardial infarction (OR =1.132, 95% CI: 1.104-1.160), ischemic heart disease (OR =1.129, 95% CI: 1.105-1.154), heart failure (OR =1.050, 95% CI: 1.029-1.072), stroke (OR =1.087, 95% CI: 1.068-1.107), ischemic stroke (OR =1.080, 95% CI: 1.059-1.102), essential hypertension (OR =1.013, 95% CI: 1.010-1.015), coronary atherosclerosis (OR =1.005, 95% CI: 1.004-1.007), and major coronary heart disease event (OR =1.003, 95% CI: 1.002-1.004). Additionally, T2DM was causally related to lower levels of high-density lipoprotein cholesterol (OR =0.965, 95% CI: 0.958-0.973) and apolipoprotein A (OR =0.982, 95% CI: 0.977-0.987) but a higher level of triglycerides (OR =1.060, 95% CI: 1.036-1.084). Moreover, causal effect of glycemic traits on CVDs and lipid traits were also observed. Finally, most results of univariable MR were supported by multivariable MR.ConclusionWe provided evidence for the causal effects of T2DM and glycemic traits on the risk of CVDs and dyslipidemia. Further investigations to elucidate the underlying mechanisms are warranted.
Background. Coronary artery disease (CAD) is a complex disease and the leading cause of death worldwide. It is caused by genetic and environmental factors or their interactions. Candidate gene association studies are an important genetic strategy for the study of complex diseases, and multiple variants of inflammatory cytokines have been found to be associated with CAD using this method. Interleukin-5 (IL-5) is an important inflammatory immune response factor that plays a role in a various inflammatory disease. Clinical tests and animal experiments indicated that IL-5 is involved in CAD development, but the exact mechanisms are unclear. This study investigated the genetic relationship between the single nucleotide polymorphisms (SNPs) in IL5 and CAD. Materials and Methods. Based on the Chinese Han population, we collected 1,824 patients with CAD and 1,920 control subjects and performed a two-stage case-control association analysis for three SNPs in IL5 (rs2057687, rs78546665, and rs2069812) using the high resolution melt (HRM) technology. Logistic regression analyses were applied to adjust for traditional risk factors for CAD and to perform haplotype and gene interaction analyses. Multiple linear regression analyses were used to study relationships between the selected SNPs and serum lipid levels. Results. In this study, two-stage case-control association analysis revealed that the allele and genotype frequency distributions of the three IL5 SNPs were not statistically significant between the case and control groups. In addition, none of the IL5 haplotypes were associated with CAD. Further stratified analyses were conducted by sex, age, hypertension, and disease status, respectively, and the results revealed that the rs2057687 and rs2069812 of IL5 were associated with CAD in the male group ( p adj = 0.025 , OR, 0.77 (95% CI, 0.62-0.97); p adj = 0.016 , OR, 0.82 (95% CI, 0.70-0.97), respectively); the rs2057687 and rs78546665 of IL5 were associated with late-onset CAD ( p adj = 0.039 , OR, 0.78 (95% CI, 0.62-0.99); p adj = 0.036 , OR, 1.46 (95% CI, 1.02-1.53), respectively); the rs2069812 of IL5 was associated with CAD in the hypertension group ( p adj = 0.036 , OR, 0.84 (95% CI, 0.71-0.99)); and none of the SNPs in IL5 were associated with different CAD states (anatomical CAD and clinical CAD). In addition, the association between SNPs and the serum lipid levels indicated that rs78546665 was positively correlated with triglyceride levels ( p = 0.012 ). Finally, SNP-SNP interaction analyses revealed that interactions of rs2057687 and rs2069812 were associated with CAD ( p adj = 0.046 , OR, 0.77 (95% CI, 0.13-4.68)). Conclusion. This study suggested that the common variants of IL5 might play a role in CAD by affecting the risk factors for CAD and through SNP-SNP interactions, which provides a new target for specific treatment of CAD patients and a theoretical basis for personalized medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.