We present an efficient approach for Masked Image Modeling (MIM) with hierarchical Vision Transformers (ViTs), e.g., Swin Transformer [43], allowing the hierarchical ViTs to discard masked patches and operate only on the visible ones. Our approach consists of two key components. First, for the window attention, we design a Group Window Attention scheme following the Divide-and-Conquer strategy. To mitigate the quadratic complexity of the self-attention w.r.t. the number of patches, group attention encourages a uniform partition that visible patches within each local window of arbitrary size can be grouped with equal size, where masked self-attention is then performed within each group. Second, we further improve the grouping strategy via the Dynamic Programming algorithm to minimize the overall computation cost of the attention on the grouped patches. As a result, MIM now can work on hierarchical ViTs in a green and efficient way. For example, we can train the hierarchical ViTs about 2.7× faster and reduce the GPU memory usage by 70%, while still enjoying competitive performance on ImageNet classification and the superiority on downstream COCO object detection benchmarks. † * Corresponding author. † Code and pre-trained models: https://github.com/LayneH/GreenMIM.Preprint. Under review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.