Edited by Xiao-Fan Wang In higher eukaryotic cells, the nuclear envelope (NE) is composed of double nuclear membranes studded with nuclear pore complexes (NPCs) and undergoes dynamic disassembly and reassembly during the cell cycle. However, how the NE and NPC reassemble remains largely unclear. Here, using HeLa, HEK293, and Drosophila cells, along with immunofluorescence microscopy and transmission EM methods, we found that postmitotic annulate lamellae (AL) assembly contributes to NE and NPC assembly. We observed that the AL are parallel membrane-pair stacks and possess regularly spaced AL pore complexes (ALPCs) that are morphologically similar to the NPCs. We found that the AL assemble in the cytoplasm during mitotic exit simultaneously with NE reformation in daughter cells. Then, the assembled AL either bound the decondensing chromatin to directly transform into the NE or bound and fused with the outer nuclear membrane to join the assembling NE. The AL did not colocalize with sheet and tubular endoplasmic reticulum (ER) marker proteins on the ER or the lamin B receptor-localized membrane in the cytoplasm, suggesting that postmitotic AL assembly occurs independently of the chromatin and ER. Collectively, our results indicate that postmitotic AL assembly is a common cellular event and an intermediate step in NE and NPC assembly and in NE expansion in higher eukaryotic cells.
A functional mitotic spindle is essential for accurate chromosome congression and segregation during cell proliferation; however, the underlying mechanisms of its assembly remain unclear. Here we show that NuMA regulates this assembly process via phase separation regulated by Aurora A. NuMA undergoes liquid-liquid phase separation during mitotic entry and KifC1 facilitates NuMA condensates concentrating on spindle poles. Phase separation of NuMA is mediated by its C-terminus, whereas its dynein-dynactin binding motif also facilitates this process. Phase-separated NuMA droplets concentrate tubulins, bind microtubules, and enrich crucial regulators, including Kif2A, at the spindle poles, which then depolymerizes spindle microtubules and promotes poleward spindle microtubule flux for spindle assembly and structural dynamics. In this work, we show that NuMA orchestrates mitotic spindle assembly, structural dynamics and function via liquid-liquid phase separation regulated by Aurora A phosphorylation.
Barrier-to-autointegration factor (BAF) is a highly conserved protein in metazoans that has multiple functions during the cell cycle. We found that BAF is SUMOylated at K6, and that this modification is essential for its nuclear localization and function, including nuclear integrity maintenance and DNA replication. K6-linked SUMOylation of BAF promotes binding and interaction with lamin A/C to regulate nuclear integrity. K6-linked SUMOylation of BAF also supports BAF binding to DNA and proliferating cell nuclear antigen and regulates DNA replication. SENP1 and SENP2 catalyze the de-SUMOylation of BAF at K6. Disrupting the SUMOylation and de-SUMOylation cycle of BAF at K6 not only disturbs nuclear integrity, but also induces DNA replication failure. Taken together, our findings demonstrate that SUMOylation at K6 is an important regulatory mechanism that governs the nuclear functions of BAF in mammalian cells.
Hedgehog (Hh) signaling is a highly conserved cell signaling pathway important for cell life, development and tumorigenesis. Increasing evidence suggests that the Hh signaling pathway functions in certain phases of the cell cycle. However, the coordination between Hh signaling and cell cycle control remains poorly understood. Here, we show that polo-like kinase-1 (Plk1), a critical protein kinase regulating many processes during the cell cycle, also regulates Hh signaling by phosphorylating and inhibiting Gli1, a downstream transcription factor of the Hh signaling pathway. Gli1 expression increases along with Hh signaling activation, leading to upregulation of Hh target genes, including cyclin E, during the G1 and S phases. Gli1 is phosphorylated at S481 by Plk1, and this phosphorylation facilitates the nuclear export and binding of Gli1 with its negative regulator Sufu, leading to a reduction in Hh signaling activity. Inhibition of Plk1 kinase activity led to Gli1 maintaining is role in promoting downstream gene expression. Collectively, our data reveal a novel mechanism regarding the crosstalk between Hh signaling and cell cycle control.
The nuclear pore complexes (NPCs) are large protein assemblies as a physical gate to regulate nucleocytoplasmic transport. Here, using integrated approaches including cryo-electron microscopy, hybrid homology modeling and cell experiment, we determined the architecture of the nuclear ring (NR) from Xenopus laevis oocytes NPC at subnanometer resolution. In addition to the improvement of the Y complex model, eight copies of Nup205 and ELYS were assigned in NR. Nup205 connects the inner and outer Y complexes and contributes to the assembly and stability of the NR. By interacting with both the inner Nup160 and the nuclear envelope (NE), the N-terminal β-propeller and α-solenoid domains of ELYS were found to be essential for accurate assembly of the NPC on the NE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.