Neurofibrillary tangles (NFTs), composed of truncated and hyperphosphorylated tau, are a common feature of numerous aging-related neurodegenerative diseases including Alzheimer’s disease (AD). However, the molecular mechanisms mediating tau truncation and aggregation during aging remain elusive. Here we show that asparagine endopeptidase (AEP), a lysosomal cysteine proteinase, is activated during aging and proteolytically degrades tau, abolishes its microtubule assembly function, induces tau aggregation, and triggers neurodegeneration. AEP is upregulated and active during aging, and is activated in tau P301S transgenic mice and human AD brain, leading to tau truncation in NFTs. Deletion of AEP from tau P301S transgenic mice substantially reduces tau hyperphosphorylation, alleviates the synapse loss and rescues impaired hippocampal synaptic function and the cognitive deficits. Infection of uncleavable tau N255AN368A mutant rescues tau P301S-induced pathological and behavioral defects. Together, these observations indicate that AEP acts as a crucial mediator of tau-related clinical and neuropathological changes in neurodegenerative diseases. Inhibition of AEP may be therapeutically useful for treating tau-mediated neurodegenerative diseases.
The age-dependent deposition of amyloid-β peptides, derived from amyloid precursor protein (APP), is a neuropathological hallmark of Alzheimer's disease (AD). Despite age being the greatest risk factor for AD, the molecular mechanisms linking ageing to APP processing are unknown. Here we show that asparagine endopeptidase (AEP), a pH-controlled cysteine proteinase, is activated during ageing and mediates APP proteolytic processing. AEP cleaves APP at N373 and N585 residues, selectively influencing the amyloidogenic fragmentation of APP. AEP is activated in normal mice in an age-dependent manner, and is strongly activated in 5XFAD transgenic mouse model and human AD brains. Deletion of AEP from 5XFAD or APP/PS1 mice decreases senile plaque formation, ameliorates synapse loss, elevates long-term potentiation and protects memory. Blockade of APP cleavage by AEP in mice alleviates pathological and behavioural deficits. Thus, AEP acts as a δ-secretase, contributing to the age-dependent pathogenic mechanisms in AD.
Synaptic loss in the brain correlates well with disease severity in Alzheimer disease (AD). Deficits in brain-derived neurotrophic factor/ tropomyosin-receptor-kinase B (TrkB) signaling contribute to the synaptic dysfunction of AD. We have recently identified 7,8-dihydroxyflavone (7,8-DHF) as a potent TrkB agonist that displays therapeutic efficacy toward various neurological diseases. Here we tested the effect of 7,8-DHF on synaptic function in an AD model both in vitro and in vivo. 7,8-DHF protected primary neurons from Abinduced toxicity and promoted dendrite branching and synaptogenesis. Chronic oral administration of 7,8-DHF activated TrkB signaling and prevented Ab deposition in transgenic mice that coexpress five familial Alzheimer's disease mutations (5XFAD mice). Moreover, 7,8-DHF inhibited the loss of hippocampal synapses, restored synapse number and synaptic plasticity, and prevented memory deficits. These results suggest that 7,8-DHF represents a novel oral bioactive therapeutic agent for treating AD.
dl-3-n-Butylphthalide (NBP) has shown cytoprotective effects in animal models of stroke and has passed clinical trails as a therapeutic drug for stroke in China. Hence, as a potential clinical treatment for stroke, understanding the mechanism(s) of action of NBP is essential. This investigation aimed to delineate the cellular and molecular mechanism of NBP protection in neuronal cultures and in the ischemic brain. NBP (10 M) attenuated serum deprivation-induced neuronal apoptosis and the production of reactive oxygen species (ROS) in cortical neuronal cultures. Adult male 129 S2/sv mice were subjected to permanent occlusion of the middle cerebral artery (MCA). NBP (100 mg/kg, i.p.) administrated 2 hrs before or 1 hr after ischemia reduced ischemia-induced infarct formation, attenuated caspase-3 and caspase-9 activation in the ischemic brain. TUNEL-positive cells and mitochondrial release of cytochrome c and apoptosis-inducing-factor (AIF) in the penumbra region were reduced by NBP. The pro-apoptotic signaling mediated by phospho-JNK and p38 expression was down-regulated by NBP treatment in vitro and in vivo. It is suggested that NBP protects against ischemic damage via multiple mechanisms including mitochondria associated caspase-dependent and -independent apoptotic pathways. Previous and current studies and recent clinical trials encourage exploration of NBP as a neuroprotective drug for the treatment of ischemic stroke.
δ-secretase, also known as asparagine endopeptidase (AEP) or legumain, is a lysosomal cysteine protease that cleaves both amyloid precursor protein (APP) and tau, mediating the amyloid-β and tau pathology in Alzheimer's disease (AD). Here we report the therapeutic effect of an orally bioactive and brain permeable δ-secretase inhibitor in mouse models of AD. We performed a high-throughput screen and identified a non-toxic and selective δ-secretase inhibitor, termed compound 11, that specifically blocks δ-secretase but not other related cysteine proteases. Co-crystal structure analysis revealed a dual active site-directed and allosteric inhibition mode of this compound class. Chronic treatment of tau P301S and 5XFAD transgenic mice with this inhibitor reduces tau and APP cleavage, ameliorates synapse loss and augments long-term potentiation, resulting in protection of memory. Therefore, these findings demonstrate that this δ-secretase inhibitor may be an effective clinical therapeutic agent towards AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.