Drug-induced rhabdomyolysis (DIR) is a rare and potentially life-threatening muscle injury that is characterized by low incidence and high risk. To our best knowledge, the performance of the current predictive models for the early detection of DIR is suboptimal because of the scarcity and dispersion of DIR cases. Therefore, on the basis of the curated drug information from the Drug-Induced Rhabdomyolysis Atlas (DIRA) database, we proposed a random forest (RF) model to predict the DIR severity of the marketed drugs. Compared with the state-of-art methods, our proposed model outperformed extreme gradient boosting, support vector machine, and logistic regression in distinguishing the Most-DIR concern drugs from the No-DIR concern drugs (Matthews correlation coefficient (MCC) and recall rate of our model were 0.46 and 0.81, respectively). Our model was subsequently applied to predicting the potentially serious DIR for 1402 drugs, which were reported to cause DIR by the postmarketing DIR surveillance data in the FDA Spontaneous Adverse Events Reporting System (FAERS). As a result, 62.7% (94) of drugs ranked in the top 150 drugs with the Most-DIR concerns in FAERS can be identified by our model. The top four drugs (odds ratio >30) including acepromazine, rapacuronium, oxyphenbutazone, and naringenin were correctly predicted by our model. In conclusion, the RF model can well predict the Most-DIR concern drug only based on the chemical structure information and can be a facilitated tool for early DIR detection.
There has been growing recognition of the vital links between structural variations (SVs) and diverse diseases. Research suggests that, with much longer DNA fragments and abundant contextual information, long-read technologies have advantages in SV detection even in complex repetitive regions. So far, several pipelines for calling SVs from long-read sequencing data have been proposed and used in human genome research. However, the performance of these pipelines is still lack of deep exploration and adequate comparison. In this study, we comprehensively evaluated the performance of three commonly used long-read SV detection pipelines, namely PBSV, Sniffles and PBHoney, especially the performance on detecting the SVs in tandem repeat regions (TRRs). Evaluated by using a robust benchmark for germline SV detection as the gold standard, we thoroughly estimated the precision, recall and F1 score of insertions and deletions detected by the pipelines. Our results revealed that all these pipelines clearly exhibited better performance outside TRRs than that in TRRs. The F1 scores of Sniffles in and outside TRRs were 0.60 and 0.76, respectively. The performance of PBSV was similar to that of Sniffles, and was generally higher than that of PBHoney. In conclusion, our findings can be benefit for choosing the appropriate pipelines in real practice and are good complementary to the application of long-read sequencing technologies in the research of rare diseases.
This article investigates the problem of scattered burst signal detection based on multiple sensors to obtain overall decisions. In the explosion detection system studied in the article, sensors independently transmit their decisions on measuring explosion information to the data fusion processing terminal, which provides overall decisions based on fusion rules. The researchers focus on the data fusion theory of the distributed parallel detection burst point data fusion system based on the Bayesian rule. This paper has obtained the data fusion rule and sensor decision criteria that make the overall system optimal, and proposed a nonlinear Gauss Seidel mathematical variable algorithm that optimizes the data fusion rule and multi-sensor decision criteria The data fusion problem when detecting burst point signals with two different and three identical types of sensors. The data fusion algorithm proposed in this article is validated and simulated through computer experiments on the detection of three types of sensors. The relevant experimental data show that the performance of a data fusion system based on Bayesian detection is significantly improved compared with the sensor acquisition of burst point information. In the experiment, the risk of Bayesian missing detection of burst point signal coefficient of the data fusion system using three sensors with the same performance is reduced by 32.7%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.