BackgroundKaempferia parviflora (KP) is an herb found in the north of Thailand and used as a folk medicine for improving vitality. Current reports have shown the anti-cancer activities of KP. However, the anti-cancer effects of KP on highly aggressive ovarian cancer have not been investigated. Therefore, we determined the effects of KP on cell proliferation, migration, and cell death in SKOV3 cells.MethodsOvarian cancer cell line, SKOV3 was used to investigate the anti-cancer effect of KP extract. Cell viability, cell proliferation, MMP activity, cell migration, and invasion were measured by MTT assay, cell counting, gelatin zymography, wound healing assay, and Transwell migration and invasion assays, respectively. Cell death was determined by trypan blue exclusion test, AnnexinV/PI with flow cytometry, and nuclear staining. The level of ERK and AKT phosphorylation, and caspase-3, caspase-7, caspase-9 was investigated by western blot analysis.ResultsKP extract was cytotoxic to SKOV3 cells when the concentration was increased, and this effect could still be observed even though EGF was present. Besides, the cell doubling time was significantly prolonged in the cells treated with KP. Moreover, KP strongly suppressed cell proliferation, cell migration and invasion. These consequences may be associated with the ability of KP in inhibiting the activity of MMP-2 and MMP-9 assayed by gelatin zymography. Moreover, KP at high concentrations could induce SKOV3 cell apoptosis demonstrated by AnnexinV/PI staining and flow cytometry. Consistently, nuclear labelling of cells treated with KP extract showed DNA fragmentation and deformity. The induction of caspase-3, caspase-7, and caspase-9 indicates that KP induces cell death through the intrinsic apoptotic pathway. The antitumor activities of KP might be regulated through PI3K/AKT and MAPK pathways since the phosphorylation of AKT and ERK1/2 was reduced.ConclusionsThe inhibitory effects of KP in cell proliferation, cell migration and invasion together with apoptotic cell death induction in SKOV3 cells suggest that KP has a potential to be a new candidate for ovarian cancer chemotherapeutic agent.
Psoriasis is a common immune-mediated chronic inflammatory skin disease characterized by thick and erythema raised plaques with adherent silvery scales. T-cells are activated via the IL-23/Th17 axis which is involved in psoriasis pathogenesis. Conventional treatments of psoriasis have adverse events that influence patients' adherence. Wannachawee Recipe (WCR) is Thai traditional medicine that is known to be effective for psoriasis patients; however, preclinical evidence is still lacking. This study investigated the therapeutic potential of WCR on antiproliferant activity using imiquimod- (IMQ-) induced psoriasis-like dermatitis in a mouse model. Psoriasis-like dermatitis was induced on the shaved dorsal skin and right ear pinna of BALB/c mice by topical application of IMQ for 15 consecutive days after which WCR was administered to the mice by oral gavage for 10 days. Phenotypical observations, histopathological examinations, and ELISA of skin and blood samples were conducted. WCR significantly ameliorated development of IMQ-induced psoriasis-like dermatitis and reduced levels of Th17 cytokines (IL-17A, IL-22, and IL-23) in both serum and dorsal skin. Histopathological findings showed a decrease in epidermal thickness and inflammatory T-cell infiltration in the WCR-treated groups. The WCR has pharmacological actions which regulate Th17 related cytokines suggesting that it is a potential alternative therapeutic strategy for psoriasis.
Kaempferia parviflora (KP) has been traditionally used as a folk remedy to treat several diseases including cancer, and several studies have reported cytotoxic activities of extracts of KP against a number of different cancer cell lines. However, many aspects of the molecular mechanism of action of KP remain unclear. In particular, the ability of KP to regulate cancer cell growth and survival signaling is still largely unexplored. The current study aimed to investigate the effects of KP on cell viability, cell migration, cell invasion, cell apoptosis, and on signaling pathways related to growth and survival of cervical cancer cells, HeLa. We discovered that KP reduced HeLa cell viability in a concentration-dependent manner. The potent cytotoxicity of KP against HeLa cells was associated with a dose-dependent induction of apoptotic cell death as determined by flow cytometry and observation of nuclear fragmentation. Moreover, KP-induced cell apoptosis was likely to be mediated through the intrinsic apoptosis pathway since caspase 9 and caspase 7, but not BID, were shown to be activated after KP exposure. Based on the observation that KP induced apoptosis in HeLa cell, we further investigated the effects of KP at non-cytotoxic concentrations on suppressing signal transduction pathways relevant to cell growth and survival. We found that KP suppressed the MAPK and PI3K/AKT signaling pathways in cells activated with EGF, as observed by a significant decrease in phosphorylation of ERK1/2, Elk1, PI3K, and AKT. The data suggest that KP interferes with the growth and survival of HeLa cells. Consistent with the inhibitory effect on EGF-stimulated signaling, KP potently suppressed the migration of HeLa cells. Concomitantly, KP was demonstrated to markedly inhibit HeLa cell invasion. The ability of KP in suppressing the migration and invasion of HeLa cells was associated with the suppression of matrix metalloproteinase-2 production. These data strongly suggest that KP may slow tumor progression and metastasis in patients with cervical cancer. Taken together, the present report provides accumulated evidence revealing the potent anti-cancer activities of Kaempferia parviflora against cervical cancer HeLa cells, and suggests its potential use as an alternative way for cervical cancer prevention and therapy.
Artocarpus lakoocha Roxb. (AL) has been known for its high content of stilbenoids, especially oxyresveratrol. AL has been used in Thai traditional medicine for centuries. However, the role of AL in regulating inflammation has not been elucidated. Here we investigated the molecular mechanisms underlying the anti-inflammation of AL ethanolic extract in RAW 264.7 murine macrophage cell line. The HPLC results revealed that this plant was rich in oxyresveratrol, and AL ethanolic extract exhibited anti-inflammatory properties. In particular, AL extract decreased lipopolysaccharide (LPS)-mediated production and secretion of cytokines and chemokine, including IL-6, TNF-α, and MCP-1. Consistently, the extract inhibited the production of nitric oxide (NO) in the supernatants of LPS-stimulated cells. Data from the immunofluorescence study showed that AL extract suppressed nuclear translocation of nuclear factor-kappa B (NF-κB) upon LPS induction. Results from Western blot analysis further confirmed that AL extract strongly prevented the LPS-induced degradation of IκB which is normally required for the activation of NF-κB. The protein expression of iNOS and COX-2 in response to LPS stimulation was significantly decreased with the presence of AL extract. AL extract was found to play an anti-inflammatory role, in part through inhibiting LPS-induced activation of Akt. The extract had negligible impact on the activation of mitogen-activated protein kinase (MAPK) pathways. Specifically, incubation of cells with the extract for only 3 h demonstrated the rapid action of AL extract on inhibiting the phosphorylation of Akt, but not ERK1/2. Longer exposure (24 h) to AL extract was required to mildly reduce the phosphorylation of ERK1/2, p38, and JNK MAPKs. These results indicate that AL extract manipulates its anti-inflammatory effects mainly through blocking the PI3K/Akt and NF-κB signal transduction pathways. Collectively, we believe that AL could be a potential alternative agent for alleviating excessive inflammation in many inflammation-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.