Automatic Machine Learning (AutoML) uses automated data-driven methods to realize the selection of hyper-parameters, neural network architectures, regularization methods, etc., making machine learning techniques easier to apply and reducing dependence on experienced human experts. And hyper-parameter search based on automatic machine learning is one of the current research hotspots in the industry and academia. We mainly introduce the hyper-parameter search framework based on automatic machine learning and the common hyper-parameter search strategies. Combined with specific data sets, the classification accuracy of the model under different hyper-parameter search strategies is compared to find the model parameter configuration that can maximize the classification accuracy. Compared with the experience-based parameter adjustment method, the hyper-parameter search based on automatic machine learning can reduce labor costs, improve training efficiency, and automatically construct a dedicated convolutional neural network to maximize the model effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.