Sodium-ion batteries (SIBs) are considered as one of the most promising candidates for competing with lithium-ion batteries owing to significant natural abundance of sodium and similar reaction mechanism. The large radius of Na + (1.02 Å) severely impedes the electrochemical performance, especially high-rate capability and long-cycle stability of SIBs. Together with the cathode and electrolyte, the anode determines full battery's operating voltage and plays a vital role in avoiding sodium dendrite in terms of redox potential. On this account, the anode holds a prime importance toward the development of advanced SIBs with high rate capability and superior durability. Herein, we present a review on the exciting advances in alloy-and conversion-type anode materials as well as solid-electrolyte interphase layer for SIBs aiming at the improvement of rate capability and cycling life. Finally, the challenges and some of the critical issues in alloy-type and conversion-type anode materials for sodium-ion batteries are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.