Plant-based natural biotemplates are increasingly gaining popularity for the development of catalytic filters in water treatment owing to their unique features, such as exquisite microstructures, renewable properties, and environmental friendliness....
We developed a novel green approach for the in situ fabrication of Ag NPs in mesoporous TiO2 films via the bamboo self-sacrificing reduction of Ag(NH3)2+ ions, which can inhibit fungal growth on the bamboo surface. Mesoporous anatase TiO2 (MT) films were first synthesized on bamboo via a hydrothermal method. Then, Ag NPs with a 5.3 nm mean diameter were incorporated into the pore channels of optimal MT/bamboo (MTB) samples at room temperature without the addition of reducing agents, such that the Ag NPs were almost entirely embedded into the MT films. Our analysis indicated that the solubilized lignin from bamboo, which is rich in oxygen-containing functional groups, serves as a green reductant for reducing the Ag(NH3)2+ ions to Ag NPs. Antifungal experiments with Trichoderma viride under dark conditions highlighted that the antifungal activity of the Ag/MT/bamboo samples were greater than those of naked bamboo, MTB, and Ag/bamboo, suggesting that these hybrid nanomaterials produce a synergistic antifungal effect that is unrelated to photoactivity. The inhibition of Penicillium citrinum effectively followed a similar trend. This newly developed bamboo protection method may provide a sustainable, eco-friendly, and efficient method for enhancing the antifungal characteristics of traditional bamboo, having the potential to prolong the service life of bamboo materials, particularly under dark conditions.
MOF199 is deposited on moso bamboo and balsa wood under mild conditions. A uniform and dense MOF199 layer with perfect crystal morphology was successfully obtained on the hierarchical surface of both bamboo and wood.
Controlled release of iodopropynyl butylcarbamate from functionalized halloysite nanotubes was realized by coating with LbL polyelectrolyte multilayers, with potential for protection of bamboo materials with a prolonged lifetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.