Disruption of the circadian rhythm or biological clock, which is regulated by a number of clock genes, including circadian locomotor output cycles kaput (CLOCK), period genes (PERs), and cryptochrome genes (CRYs), is a risk factor for breast cancer. We hypothesized that genetic variation in these clock genes may influence breast cancer risk. To test this hypothesis, we designed a hospital-based study that included 1,538 breast cancer patients and 1,605 healthy controls. We genotyped subjects for five single nucleotide polymorphisms (SNPs) and a length variant of the circadian clock genes and evaluated their associations with breast cancer risk. These polymorphisms were determined by TaqMan allelic discrimination assays and the polymerase chain reaction-restriction fragment length polymorphism method. Univariate logistic regression analysis showed that polymorphisms of the CLOCK and CRY1 genes were associated with breast cancer risk. We found that carriers of the CLOCK CT and combined CT+TT genotypes had a significantly higher risk of breast cancer than carriers of the CC genotype (aOR = 1.35, 95% CI = 1.12-1.63 and aOR = 1.30, 95% CI = 1.09-1.56, respectively). Carriers of the CRY1 GT genotype had a decreased risk of breast cancer (aOR = 0.84, 95% CI = 0.71-0.99). We also observed a lower risk of breast cancer in carriers of the CRY2 CC genotype who were ER-positive than in those who were ER-negative (OR = 0.15, 95% CI = 0.04-0.67). When stratified by the CLOCK genotype, patients with the CLOCK CT/ CRY2 CC genotypes had significantly lower cancer risk than those with the GG genotype (aOR = 0.36, 95% CI = 0.14-0.95). Individuals carrying both the CLOCK CC and PER2 AA genotypes had an increased cancer risk (aOR = 2.28, 95% CI = 1.22-4.26). Our study suggests that genetic variants of the circadian rhythm regulatory pathway genes contribute to the differential risk of developing breast cancer in Chinese populations.
Src homology region 2 domain-containing phosphatase 1 (SHP-1) has been implicated as a potential cancer therapeutic target by its negative regulation of immune cell activation and the activity of the SHP-1 inhibitor sodium stibogluconate that induced IFN-γ+ cells for anti-tumor action. To develop more potent SHP-1-targeted anti-cancer agents, inhibitory leads were identified from a library of 34,000 drug-like compounds. Among the leads and active at low nM for recombinant SHP-1, tyrosine phosphatase inhibitor-1 (TPI-1) selectively increased SHP-1 phospho-substrates (pLck-pY394, pZap70, and pSlp76) in Jurkat T cells but had little effects on pERK1/2 or pLck-pY505 regulated by phosphatases SHP-2 or CD45, respectively. TPI-1 induced mouse splenic–IFN-γ+ cells in vitro, ∼58-fold more effective than sodium stibogluconate, and increased mouse splenic-pLck-pY394 and –IFN-γ+ cells in vivo. TPI-1 also induced IFN-γ+ cells in human peripheral blood in vitro. Significantly, TPI-1 inhibited (∼83%, p < 0.002) the growth of B16 melanoma tumors in mice at a tolerated oral dose in a T cell-dependent manner but had little effects on B16 cell growth in culture. TPI-1 also inhibited B16 tumor growth and prolonged tumor mice survival as a tolerated s.c. agent. TPI-1 analogs were identified with improved activities in IFN-γ+ cell induction and in anti-tumor actions. In particular, analog TPI-1a4 as a tolerated oral agent completely inhibited the growth of K1735 melanoma tumors and was more effective than the parental lead against MC-26 colon cancer tumors in mice. These results designate TPI-1 and the analogs as novel SHP-1 inhibitors with anti-tumor activity likely via an immune mechanism, supporting SHP-1 as a novel target for cancer treatment.
Drug resistance is a major obstacle in cancer treatments and diminishes the clinical efficacy of biological, cytotoxic, or targeted therapeutics. Being an antiapoptotic mediator of chemoresistance in breast and lung cancer cells, MKP1 phosphatase might be targeted for overcoming chemoresistance and improving therapeutic efficacy. In this work, tyrosine phosphatase inhibitor-3 (TPI-3) was identified as a novel small molecule inhibitor of MKP1 and was capable of sensitizing tumors to bio-and chemotherapeutics in mice as a tolerated oral agent. Effective against recombinant MKP1, TPI-3 selectively increased MKP1 phosphosubstrates in Jurkat cells and induced cell death via apoptosis at nanomolar concentrations. TPI-3 also increased MKP1 phosphosubstrates in WM9 human melanoma cells and synergized with biotherapeutic IFNα2b in the growth inhibition of melanoma cells in vitro (combination index, <1). WM9 xenografts unresponsive to individual agents were significantly inhibited (62%, P = 0.001) in mice by a tolerated combination of oral TPI-3 (10 mg/kg, 5 d/wk) and IFNα2b. MKP1 expression was detected in human melanoma cell lines and tissue samples at levels up to six times higher than those in normal or nonmalignant melanocytes. TPI-3 also interacted positively with chemotherapeutics, 5-fluorouracil/leucovorin, against MC-26 colon cancer cells in vitro and in mice. Altogether, our data show the preclinical activities of TPI-3 in overcoming cancer resistance to bio-and chemotherapeutics, implicate MKP1 as a drug-resistant molecule in melanoma, and support the targeting of MKP1 for improving cancer therapeutic efficacy. Mol Cancer Ther; 9(8);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.