Recent measurements of narrow bipolar lightning events (NBEs) by very high frequency (VHF) radio interferometer have resolved the dynamic development of this special lightning process with submicrosecond time resolution, and showed that the fast positive breakdown (FPB) process is responsible for initiating at least some lightning flashes. In this study, with a newly built and deployed VHF interferometer system, we analyzed 31 intracloud lightning flash initiation events during three thunderstorms at short range from the interferometer. These events separate into two distinct classes that can be identified based on the time scale and the occurrence contexts of the first detectable VHF emissions from the flash. One class has features completely consistent with previously reported FPB events and is associated with continuous VHF emissions of 10–20 μs duration. Downward motion of the FPB region centroid merged continuously into the development of the subsequent upward negative leaders. But the majority of the lightning flashes analyzed began with ultrashort, submicrosecond duration, isolated pulses of VHF emission with no identifiable FPB signatures between these pulses and the leader development. These short VHF pulses begin typically a few hundred microseconds before the upward leader developes and are located at the same position where the leader eventually begins. We suggest that the FPB process is responsible for initiating some but not all lightning flashes, and the extremely short pulse‐like VHF emissions play a role in initiating those flashes without any FPB process.
An improved ray theory and transfer matrix method‐based model for a lightning electromagnetic pulse (LEMP) propagating in Earth‐ionosphere waveguide (EIWG) is proposed and tested. The model involves the presentation of a lightning source, parameterization of the lower ionosphere, derivation of a transfer function representing all effects of EIWG on LEMP sky wave, and determination of attenuation mode of the LEMP ground wave. The lightning source is simplified as an electric point dipole standing on Earth surface with finite conductance. The transfer function for the sky wave is derived based on ray theory and transfer matrix method. The attenuation mode for the ground wave is solved from Fock's diffraction equations. The model is then applied to several lightning sferics observed in central China during day and night times within 1000 km. The results show that the model can precisely predict the time domain sky wave for all these observed lightning sferics. Both simulations and observations show that the lightning sferics in nighttime has a more complicated waveform than in daytime. Particularly, when a LEMP propagates from east to west (Φ = 270°) and in nighttime, its sky wave tends to be a double‐peak waveform (dispersed sky wave) rather than a single peak one. Such a dispersed sky wave in nighttime may be attributed to the magneto‐ionic splitting phenomenon in the lower ionosphere. The model provides us an efficient way for retrieving the electron density profile of the lower ionosphere and hence to monitor its spatial and temporal variations via lightning sferics.
Abstract. The relative light intensities as a function of height and time for two negative downward stepped leaders, A and B, recorded by a high-speed digital 16 x 16 photodiode array photographic system, are studied. For leader A it is found that the light waveform for each segment of the leader channel starts with a series of sharp light pulses followed by several slow-rising and longer-lasting light surges, with both the light pulses and surges superimposed on a continuous luminosity slope that has a long rising front followed by an almost constant light level. Analysis indicates that each light pulse involves a step process; it originates at the leader tip and appears to propagate upward, with the pulse amplitude suffering little degradation within the first several tens of meters to 200 rn from the leader tip up (bright tip length) but with a severe attenuation above. The light surges are observed to be almost constant in amplitude above the bright tip, and for one of them an upward propagation speed of the order of 108 m/s is inferred. From appearances of the light pulses it is determined that the leader A has an overall velocity of 4.5-11.2 x l0 s m/s, a step interval of 5-50/•s, and a step length of 7.9-19.8 m. For leader B the step light pulses are found to propagate from the leader tip back up at a speed of 0.14-1.7 x 108 m/s, and the overall leader velocity, the step interval, and the step length are determined to be about 4.9-5.8 x 10 ø m/s, 18-21 /•s, and 8.5 m, respectively. In addition, on the basis of the light waveforms of the leader A it is inferred that the current of a stepped leader may consist of two parts: an impulsive current within the bright tip and a continuing current above it. After propagating along the bright tip up, because of increasing resistance and capacitance of the leader channel the impulsive current rapidly transforms into part of the continuing current.
[1] This paper presents an analysis of the experimental data on five negative lightning flashes initiated using the altitude-triggering technique in China. The data include highly time-resolved optical images and electric fields measured 60 m and 1300 m from the lightning channel. The triggering technique involves the launching upward of a small rocket trailing a wire electrically floating. The data show that these 5 flashes have a similar chronological sequence of events, including a bidirectional leader system followed by a mini-return stroke and a bidirectional discharge process. The bidirectional leader system consists of an upward positive leader initiated from the top of the wire and a downward negative stepped leader from the bottom, with the onset of the former prior to the latter by 3 to 8.3 ms. The downward negative stepped leader, having a step interval of 12-30 ms, appears to pause and resume several times while the upward positive leader extends forward continuously. With the downward negative stepped leader close to ground, a minireturn stroke occurs between the ground and the bottom of the wire. The mini-return stroke propagates upward with a speed of 1-2 Â 10 8 m/s and emits intense light signals similar to a normal return stroke below the bottom of the wire. It becomes invisible after entering the bottom of the wire and appears again as a bright upward discharge from the top of the wire several microseconds later. This upper bright discharge ceases after propagating forward several hundred meters at a speed of 1.5-5.4 Â 10 7 m/s. The cessation of the upper bright discharge is obviously associated with the disintegration of the wire at that moment. Right after the cessation of the upper bright discharge, a bidirectional discharge process starts from the bottom of the wire with its positively charged part having an upward speed of 3-10 Â 10 5 m/s and its negatively charged part a downward speed of 2-2.6 Â 10 5 m/s. Reflection of current waves at the bottom of the wire due to the explosion of the wire at that moment may be a major reason for the occurrence of this lower bidirectional discharge.
Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic‐contaminated air and food. Here we report the health effects of arsenic exposure from burning high arsenic‐containing coal in Guizhou, China. Coal in this region has undergone mineralization and thus produces high concentrations of arsenic. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic‐contaminated food (50‐80%), air (10‐20%), water (1‐5%), and direct contact in coal‐mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such overexposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.