Global warming, environmental pollution, and the soaring cost of energy consumption for ships have drawn the attention of the International Maritime Organization and the shipping industry. By reducing the energy consumption of ships, the greenhouse gas emissions and operating costs of ships can be effectively reduced simultaneously. However, current research on the ship energy consumption optimization based on operating mode is mainly focused on route and speed optimization and less on trim optimization, but ship trim is also an important factor affecting energy consumption. Therefore, this study proposed a ship trim optimization method based on operational data and ensemble learning to achieve energy savings and emission reductions for inland sea ships. First, data processing and feature selection of operational data from an inland ro-ro passenger ship were undertaken. Second, the energy consumption prediction models were established based on ensemble learning. Finally, the trim optimization model was developed by combining the energy consumption model with the best prediction performance and enumeration method. Experimental results show that compared with linear regression, neural networks, and support vector machines, ensemble learning methods have better prediction performance in energy consumption modeling, and the extra tree (ET) model has the best prediction performance. With the trim optimization, the energy consumption and carbon emissions of a ro-ro passenger ship can be reduced by 1.4641%, which is conducive to the green and low-carbon navigation of ships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.