In this study, we reported millepachine (MIL), a novel chalcone compound for the first time isolated from Millettia pachycarpa Benth (Leguminosae), induced cell cycle arrest and apoptosis in human hepatocarcinoma cells in vitro and in vivo. In in vitro screening experiments, MIL showed strong antiproliferation activity in several human cancer cell lines, especially in HepG2 cells with an IC50 of 1.51 µM. Therefore, we chose HepG2 and SK-HEP-1 cells to study MIL's antitumor mechanism. Flow cytometry showed that MIL induced a G2/M arrest and apoptosis in a dose-dependent manner. Western blot demonstrated that MIL-induced G2/M arrest was correlated with the inhibition of cyclin-dependent kinase 1 activity, including a remarkable decrease in cell division cycle (cdc) 2 synthesis, the accumulation of phosphorylated-Thr14 and decrease of phosphorylation at Thr161 of cdc2. This effect was associated with the downregulation of cdc25C and upmodulation of checkpoint kinase 2 in response to DNA damage. MIL also activated caspase 9 and caspase 3, and significantly increased the ratio of Bax/Bcl-2 and stimulated the release of cytochrome c into cytosol, suggesting MIL induced apoptosis via mitochondrial apoptotic pathway. Associated with those effects, MIL also induced the generation of reactive oxygen species. In HepG2 tumor-bearing mice models, MIL remarkably and dose dependently inhibited tumor growth. Treatment of mice with MIL (20mg/kg intravenous [i.v.]) caused more than 65% tumor inhibition without cardiac damage compared with 47.57% tumor reduction by 5mg/kg i.v. doxorubicin with significant cardiac damage. These effects suggested that MIL and its easily modified structural derivative might be a potential lead compound for antitumor drug.
The nematode Caenorhabditis elegans has been shown to be a model organism in studying aquatic toxicity. Although epidemiological studies have shown that arsenic is teratogenic and carcinogenic to humans, the lethality assay indicated that C. elegans is less sensitive to inorganic arsenic than any other organisms that have been tested thus far. In the present study, we used the more malleable germline of C. elegans as an in vivo system to investigate the genotoxic effects of arsenite. After animals were exposed to sodium arsenite at concentrations ranging from 1 microM to 0.5 mM, mitotic germ cells and germline apoptosis were scored after DAPI staining and acridine orange vital staining, respectively. DMSO rescue experiments were performed by exposing C. elegans to 0.01 mM arsenite in the presence of DMSO (0.1%) for 24 h, and reactive oxygen species (ROS) were semiquantified by CM-H(2)DCFDA vital staining. The results indicated that arsenic exposure reduced the brood size of C. elegans and caused mitotic cell cycle arrest and germline apoptosis, which, to some extent, exhibited a concentration- and time-dependent manner. The addition of 0.1% DMSO completely rescued arsenic-induced cell cycle arrest and partially suppressed germline apoptosis. Furthermore, treatment of animals with arsenite at a dose of 0.01 mM significantly increased ROS production in the intestine, which could be reduced by DMSO treatment. The present study also indicated that C. elegans might be used as an in vivo model system to study the mechanisms of arsenic-induced genotoxic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.