We have developed a new stochastic nonlinear inversion method for seismic reservoir characterization studies to jointly estimate elastic and petrophysical properties and to quantify their uncertainty. Our method aims to estimate multiple reservoir realizations of the entire set of reservoir properties, including seismic velocities, density, porosity, mineralogy, and saturation, by iteratively updating the initial ensemble of models based on the mismatch between their seismic response and the measured seismic data. The initial models are generated using geostatistical methods and the geophysical forward operators include rock-physics relations and a seismic forward model. The optimization is achieved using an iterative ensemble-based algorithm, namely, the ensemble smoother with multiple data assimilation, in which each iteration is based on a Bayesian updating step. The advantages of the proposed method are that it can be applied to nonlinear inverse problems and it can provide an ensemble of solutions from which we can quantify the uncertainty of the model properties of interest. To reduce the computational cost of the inversion, we perform the optimization in a lower dimensional data space reparameterized by singular value decomposition. The proposed methodology is validated on a synthetic case in which the set of petroelastic properties is recovered with satisfactory accuracy. Then, we applied the inversion method to a real seismic data set from the Norne field in the Norwegian Sea.
We have developed a time-lapse seismic history matching framework to assimilate production data and time-lapse seismic data for the prediction of static reservoir models. An iterative data assimilation method, the ensemble smoother with multiple data assimilation is adopted to iteratively update an ensemble of reservoir models until their predicted observations match the actual production and seismic measurements and to quantify the model uncertainty of the posterior reservoir models. To address computational and numerical challenges when applying ensemble-based optimization methods on large seismic data volumes, we develop a deep representation learning method, namely, the deep convolutional autoencoder. Such a method is used to reduce the data dimensionality by sparsely and approximately representing the seismic data with a set of hidden features to capture the nonlinear and spatial correlations in the data space. Instead of using the entire seismic data set, which would require an extremely large number of models, the ensemble of reservoir models is iteratively updated by conditioning the reservoir realizations on the production data and the low-dimensional hidden features extracted from the seismic measurements. We test our methodology on two synthetic data sets: a simplified 2D reservoir used for method validation and a 3D application with multiple channelized reservoirs. The results indicate that the deep convolutional autoencoder is extremely efficient in sparsely representing the seismic data and that the reservoir models can be accurately updated according to production data and the reparameterized time-lapse seismic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.