Effective therapeutic strategies for radiation-induced lung injury (RILI) are lacking. Mesenchymal stem cells (MSCs), as gene therapy delivery vehicles, possess the ability to repair injured lung. In this study, we conducted MSC-based hepatocyte growth factor (HGF) gene therapy for RILI. Mice received single-dose radiation with 20 Gy of γ rays locally to the lung, and then were administered normal sodium, Ad-HGF-modified MSCs, or Ad-Null-modified MSCs. Ad-HGF-modified MSCs (MSCs-HGF) improved histopathological and biochemical markers of lung injury. MSCs-HGF could reduce secretion and expression of proinflammatory cytokines, including tumor necrosis factor-α, interferon-γ, interleukin (IL)-6, and intercellular adhesion molecule-1, and increase the expression of antiinflammatory cytokine IL-10. It could also decrease expression levels of profibrosis factors transforming growth factor-β, Col1a1 (collagen type 1, α1), and Col3a1, and inhibit fibrosis progress. MSCs-HGF could promote proliferation of lung epithelial cells and protect them from apoptosis, and improve the expression of endogenous HGF and its receptor c-Met significantly. We also found that sphingosine-1-phosphate receptor-1 expression was increased in injured lung. These results suggest MSC-based HGF gene therapy not only reduces inflammation but also inhibits lung fibrosis.
Cancer cells exhibit the reprogrammed metabolism mainly via aerobic glycolysis, a phenomenon known historically as the Warburg effect; however, the underlying mechanisms remain largely unknown. In this study, we characterized the critical role of transcription factor Forkhead box protein M1 (FOXM1) in aerobic glycolysis of human epithelial ovarian cancer (EOC) and its molecular mechanisms. Our data showed that aberrant expression of FOXM1 significantly contributed to the reprogramming of glucose metabolism in EOC cells. Aerobic glycolysis and cell proliferation were down-regulated in EOC cells when FOXM1 gene expression was suppressed by RNA interference. Moreover, knockdown of FOXM1 in EOC cells significantly reduced glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) expression. FOXM1 bound directly to the GLUT1 and HK2 promoter regions and regulated the promoter activities and the expression of the genes at the transcriptional level. This reveals a novel mechanism by which glucose metabolism is regulated by FOXM1. Importantly, we further demonstrated that the expression levels of FOXM1, GLUT1 and HK2 were significantly increased in human EOC tissues relative to normal ovarian tissues, and that FOXM1 expression was positively correlated with GLUT1 and HK2 expression. Taken together, our results show that FOXM1 promotes reprogramming of glucose metabolism in EOC cells via activation of GLUT1 and HK2 transcription, suggesting that FOXM1 may be an important target in aerobic glycolysis pathway for developing novel anticancer agents.
A hot issue in current research regarding stem cells for regenerative medicine is the retainment of the stemness and multipotency of stem cell. Endothelial progenitor cells (EPCs) are characterized by an angiogenic switch that induces angiogenesis and further ameliorates the local microenvironment in ischemic organs. This study investigated whether EPCs could modulate the multipotent and differential abilities of mesenchymal stem cells (MSCs) in vitro and in vivo. We established an EPC/MSC indirect Transwell coculture system and then examined the effects of EPCs on the regulation of MSC biological properties in vitro and bone formation in vivo. The in vitro studies showed that cocultured MSCs (coMSCs) display no overt changes in cell morphology but an enhanced MSC phenotype compared with monocultured MSCs (monoMSCs). Our studies regarding the cellular, molecular, and protein characteristics of coMSCs and monoMSCs demonstrated that EPCs greatly promote the proliferation and differentiation potentials of coMSCs under indirect coculture condition. The expression of the pluripotency factors OCT4, SOX2, Nanog, and Klf4 was also upregulated in coMSCs. Furthermore, coMSCs combined with fibrin glue showed improved bone regeneration when used to repair rat alveolar bone defects compared with monoMSC grafts in vivo. This study is the first to demonstrate that EPCs have dynamic roles in maintaining MSC stemness and regulating MSC differentiation potential.
Supplemental Digital Content is available in the text.
Gefitinib resistance remains a major problem in the treatment of lung adenocarcinoma. However, the molecular mechanisms of gefitinib resistance are not fully understood. In this study, we characterized the critical role of transcription factor Forkhead box protein M1 (FOXM1) in gefitinib resistance of lung adenocarcinoma cells. In vitro drug sensitivity assays demonstrated that FOXM1 inhibition sensitized PC9/GR and HCC827/GR cells to gefitinib, whereas FOXM1 overexpression enhanced PC9 and HCC827 cell resistance to gefitinib. Increased FOXM1 resulted in the upregulation of hepatocyte growth factor receptor (MET), which led to activation of the protein kinase B (AKT) pathway, whereas knockdown of FOXM1 did the opposite. FOXM1 bound directly to the MET promoter regions and regulated the promoter activities and the expression of MET at the transcriptional level. Moreover, MET/AKT pathway upregulated the expression of FOXM1 in lung adenocarcinoma cells. Inhibition of pAKT by LY294002 or inhibition of pMET by PHA-665752 significantly inhibited the expression of FOXM1 in lung adenocarcinoma cells. Importantly, we further demonstrated that the expression levels of FOXM1, pAKT and MET were significantly increased in lung adenocarcinoma tissues relative to normal lung tissues, and these three biomarkers were concomitantly overexpressed in lung adenocarcinoma tissues. Taken together, our results indicate that FOXM1 promotes acquired resistance to gefitinib of lung adenocarcinoma cells, and FOXM1 crosstalks with MET/AKT signaling to form a positive feedback loop to promote lung adenocarcinoma development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.