The pseudokinase scaffolds PEAK1 and PEAK2 are implicated in cancer cell migration and metastasis. We characterized the regulation and role of the third family member PEAK3 in cell signaling. Similar to PEAK1 and PEAK2, PEAK3 formed both homotypic and heterotypic complexes. In addition, like PEAK1, it bound to the adaptors Grb2 and CrkII. However, unlike PEAK1 and PEAK2, homodimerized PEAK3 also interacted with the ARF GTPase-activating protein ASAP1, the E3 ubiquitin ligase Cbl, and the kinase PYK2. Dimerization and subsequent phosphorylation on Tyr 24 , likely by a Src family kinase, were required for the binding of PEAK3 to Grb2 and ASAP1. Interactions with Grb2, CrkII, ASAP1, Cbl, and PYK2 exhibited contrasting dynamics upon cell stimulation with epidermal growth factor (EGF), in part due to PEAK3 dephosphorylation mediated by the phosphatase PTPN12. Overexpressing PEAK3 in mesenchymal-like MDA-MB-231 breast cancer cells enhanced cell elongation in a manner dependent on PEAK3 dimerization, and manipulation of PEAK3 expression demonstrated a positive role for this scaffold in regulating cell migration. Overexpressing PEAK3 in PEAK1/2 double-knockout MCF-10A breast epithelial cells enhanced acinar growth, impaired basement membrane integrity, and promoted invasion in three-dimensional cultures, with the latter two effects dependent on the binding of PEAK3 to Grb2 and ASAP1. PEAK1 and PEAK2 quantitatively and temporally influenced PEAK3 function. These findings characterize PEAK3 as an integral, signal-diversifying member of the PEAK family with scaffolding roles that promote cell proliferation, migration, and invasion.
The PEAK family of pseudokinases comprises PEAK1 and PEAK2 as well as the recently-identified PEAK3. PEAK1/2 play fundamental roles in regulating tyrosine kinase signal output and oncogenesis, while PEAK3 remains poorly-characterized. Here, we demonstrate that PEAK3 undergoes homotypic association as well as heterotypic interaction with PEAK1/2. PEAK3 also recruits ASAP1/2, Cbl and PYK2 and the adaptors Grb2 and CrkII, with binding dependent on PEAK3 dimerization. PEAK3 tyrosine phosphorylation on Y24 is also dependent on dimerization as well as Src family kinase activity, and interestingly, is decreased via PTPN12 in response to EGF treatment. Y24 phosphorylation is required for binding of Grb2 and ASAP1. Overexpression of PEAK3 in MDA-MB-231 breast cancer cells enhanced cell elongation and cell motility, while knockdown of endogenous PEAK3 decreased cell migration. In addition, overexpression of PEAK3 in PEAK1/2 compound knock-out MCF-10A breast epithelial cells enhanced acinar growth and invasion in 3D culture, with the latter phenotype dependent on PEAK3 tyrosine phosphorylation and binding of Grb2 and ASAP1. These findings characterize PEAK3 as an integral member of the PEAK family with scaffolding roles that promote cell proliferation, migration and invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.