To reduce the pain caused by subcutaneous injections, microneedle patches as the new transdermal drug delivery method are gaining increased attention. In this study, we fabricated a composite insulin-loaded microneedle patch. Silk fibroin, a natural polymer material, was used as the raw material. The tip of the microneedle had good dissolving property and was able to dissolve rapidly to promote the release of insulin. The pedestal had the property of swelling without dissolving and was carrying insulin as a drug store. The insulin carried by the pedestal could release continuously through the micropore channels created by the microneedles. This kind of microneedle could achieve a sustained release effect. It was observed that the insulin had good storage stability in this kind of microneedle, and it maintained more than 90% of its biological activity after 30 days. The results of transdermal delivery to diabetic rats showed that the microneedle patches displayed an apparent hypoglycemic effect and indicated a sustained release effect. These drug-loaded silk microneedle patches may act as potential delivery systems for the treatment of diabetes.
Silk fibroin has widely been used in biomedical applications for its excellent biocompatibility, degradability, and mechanical properties. Microneedles are a suitable method for transdermal drug delivery. In this work, we have prepared microneedles using silk fibroin as the main material and have added proline to change its crystal structure. The fabricated microneedles are nontoxic and degradable and show relatively slow drug release. Our results indicate that the fibroin/proline microneedles can act as carriers of insulin. Fourier transform infrared (FTIR) observations show that the structure of proline-treated fibroin is transformed from random coils to β-sheets. A more regular arrangement is formed between the molecular segments. X-ray diffraction patterns show that proline has good compatibility with fibroin and induces the secondary conformation of the microneedles to a Silk I type structure. The needles have enough strength to pierce the stratum corneum of the skin. In vitro release experiments with insulin indicate that the release time from the microneedles is maintained up to 60 h. This system of delivery may provide a painless and effective route of insulin intake for the treatment of diabetic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.