Objectives The objective was to observe the effects of Astragalus polysaccharides on diabetes and on regulation of the TGF-β/Smad signaling pathway. Methods A type 2 diabetic rat model was established with a high-fat diet in combination with low-dose streptozotocin (35 mg/kg). Astragalus polysaccharides were applied as treatment intervention and changes in blood glucose and kidney morphology and function were assessed. Results Eight weeks after model establishment, kidney weight as a proportion of total weight (KW/TW) in the high-, medium-, and low-dose Astragalus polysaccharide groups was significantly lower than that in the model group, and the KW/TW value gradually decreased with increasing dose of polysaccharides in each treatment group. Fasting blood glucose in the low- and medium-dose Astragalus polysaccharide groups was numerically lower than that in the model group and fasting blood glucose in rats in the high-dose group was significantly lower than that in the model group. Levels of 24-hour urinary microalbumin, creatinine, blood urea nitrogen, collagens I, III, and IV, α-smooth muscle actin, transforming growth factor-β1, and Smad3 in Astragalus polysaccharide groups (all doses) were significantly lower than those in the model group. Conclusions Astragalus polysaccharide significantly improved blood glucose and protected kidney function in a rat diabetes model.
Renal injury is reported to have a high mortality rate. Additionally, there are several limitations to current conventional treatments that are used to manage it. This study evaluated the protective effect of hesperidin against ischemia/reperfusion (I/R)-induced kidney injury in rats. Renal injury was induced by generating I/R in kidney tissues. Rats were then treated with hesperidin at a dose of 10 or 20 mg/kg intravenously 1 day after surgery for a period of 14 days. The effect of hesperidin on renal function, serum mediators of inflammation, and levels of oxidative stress in renal tissues were observed in rat kidney tissues after I/R-induced kidney injury. Moreover, protein expression and mRNA expression in kidney tissues were determined using Western blotting and RT-PCR. Hematoxylin and eosin (H&E) staining was done for histopathological observation of kidney tissues. The data suggest that the levels of blood urea nitrogen (BUN) and creatinine in the serum of hesperidin-treated rats were lower than in the I/R group. Treatment with hesperidin also ameliorated the altered level of inflammatory mediators and oxidative stress in I/R-induced renal-injured rats. The expression of p-IκBα, caspase-3, NF-κB p65, Toll-like receptor 4 (TLR-4) protein, TLR-4 mRNA, and inducible nitric oxide synthase (iNOS) was significantly reduced in the renal tissues of hesperidin-treated rats. Histopathological findings also revealed that treatment with hesperidin attenuated the renal injury in I/R kidney-injured rats. In conclusion, our results suggest that hesperidin protects against renal injury induced by I/R by involving TLR-4/NF-κB/iNOS signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.