Cucumber fruit trichomes could be classified into eight types; all of them are multicellular with complex and different developmental processes as compared with unicellular trichomes in other plants. The fruit trichomes or fruit spines of cucumber, Cucumis sativus L., are highly specialized structures originating from epidermal cells with diverse morphology, which grow perpendicular to the fruit surface. To understand the underlying molecular mechanisms of fruit trichome development, in this study, we conducted morphological characterization and classification of cucumber fruit trichomes and their developmental processes. We examined the fruit trichomes among 200 cucumber varieties, which could be classified into eight morphologically distinct types (I-VIII). Investigation of the organogenesis of the eight types of trichomes revealed two main developmental patterns. The development of glandular trichomes had multiple stages including initiation and expansion of the trichome precursor cell protuberating out of the epidermal surface, followed by periclinal bipartition to two cells (top and bottom) which later formed the head region and the stalk, respectively, through subsequent cell divisions. The non-glandular trichome development started with the expansion of the precursor cell perpendicularly to the epidermal plane followed by cell periclinal division to form a stalk comprising of some rectangle cells and a pointed apex cell. The base cell then started anticlinal bipartition to two cells, which then underwent many cell divisions to form a multicellular spherical structure. In addition, phytohormones as environmental cues were closely related to trichome development. We found that GA and BAP were capable of increasing trichome number per fruit with distinct effects under different concentrations.
CsMYB6 interacts with CsTRY and they work cooperatively to suppress fruit trichome initiation in cucumber.
The cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and fruit trichomes or spines are an important trait for external fruit quality. The mechanisms underlying spine formation are not well understood, but the plant-specific NAC family of transcription factors may play important roles in fruit spine initiation and development. In this study, we conducted a genome-wide survey and identified 91 NAC gene homologs in the cucumber genome. Clustering analysis classified these genes into six subfamilies; each contained a varying number of NAC family members with a similar intron–exon structure and conserved motifs. Quantitative real-time PCR analysis revealed tissue-specific expression patterns of these genes, including 10 and 12 that exhibited preferential expression in the stem and fruit, respectively. Thirteen of the 91 NAC genes showed higher expression in the wild-type plant than in its near-isogenic trichome mutant, suggesting their important roles in fruit spine development. Exogenous application of four plant hormones promoted spine formation and increased spine density on the cucumber fruits; several NAC genes showed differential expression over time in response to phytohormone treatments on cucumber fruit, implying their essential roles in fruit-trichome development. Among the NAC genes identified, 12 were found to be targets of 13 known cucumber micro-RNAs. Collectively, these findings provide a useful resource for further analysis of the interactions between NAC genes and genes underlying trichome organogenesis and development during fruit spine development in cucumber.
The fruit epidermal features such as the size of tubercules are important fruit quality traits for cucumber production. But the mechanisms underlying tubercule formation remain elusive. Here, tubercule size locus CsTS1 was identified by map-based cloning and was found to encode an oleosin protein. Allelic variation was identified in the promoter region of CsTS1, resulting in low expression of CsTS1 in all 22 different small-warty or nonwarty cucumber lines. High CsTS1 expression levels were closely correlated with increased fruit tubercule size among 44 different cucumber lines. Transgenic complementation and RNAi-mediated gene silencing of CsTS1 in transgenic cucumber plants demonstrated that CsTS1 positively regulates the development of tubercules. CsTS1 is highly expressed in the peel at fruit tubercule forming and enlargement stage. Auxin content and expression of three auxin signalling pathway genes were altered in the 35S:CsTS1 and CsTS1-RNAi fruit tubercules, a result that was supported by comparing the cell size of the control and transgenic fruit tubercules. CsTu, a C H zinc finger domain transcription factor that regulates tubercule initiation, binds directly to the CsTS1 promoter and promotes its expression. Taken together, our results reveal a novel mechanism in which the CsTu-TS1 complex promotes fruit tubercule formation in cucumber.
The fruit trichomes of Cucurbitaceae are widely desired in many Asian countries and have been a key determinant of cucumber (Cucumis sativus L.) cultivar selection for commercial production and breeding. However, our understanding of the initiation and development of cucumber trichomes is still limited. Here, we found that the cucumber TINY BRANCHED HAIR (TBH) gene is preferentially expressed in multicellular trichomes. Overexpression of CsTBH in tbh mutants restored the trichome phenotype and increased the percentage of female flowers, whereas silencing of CsTBH in wild-type plants resulted in stunted trichomes with a lower rate of female flowers. Furthermore, we provide evidence that CsTBH can directly bind to the promoters of cucumber 1-Aminocyclopropane-1-Carboxylate Synthase (CsACS) genes and regulate their expression, which affects multicellular trichome development, ethylene accumulation, and sex expression. Two cucumber acs mutants with different trichome morphology and sex morphs compared with their nearisogenic line further support our findings. Collectively, our study provides new information on the molecular mechanism of CsTBH in regulating multicellular trichome development and sex expression through an ethylene pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.