Key Points We report the first case of coronavirus disease 2019 (COVID-19) in a multiple myeloma patient successfully treated with tocilizumab. Although tocilizumab was effective in the treatment of COVID-19 in this case, randomized controlled trials are needed.
Background: There are no clear expert consensus or guidelines on how to treat 2019 coronavirus disease . The objective of this study is to investigate the short-term effect of risk-adapted treatment strategy on patients with COVID-19. Methods: We collected the medical records of 55 COVID-19 patients for analysis. We divided these patients into mild, moderate and severe groups, and risk-adapted treatment approaches were given according to the illness severity. Results: Twelve patients were in mild group and 22 were in moderate group (non-severe group, n = 34), and 21 patients were in severe group. At the end of the first two weeks after admission, clinical manifestations had completely despeared in 31(91.2%)patients in non-severe group, and 18(85.7%) patients in severe group (p = 0.85). Both groups had a satisfied chest CT imaging recovery, which includes 22(64.7%) patients in non-severe group and 12(57.1%) patients in severe group recovered at least 50% of the whole leisions in the first week, and 28(82.4%) and 16(76.2%) recovered at least 75% in the second week, respectively. There were no significant differences in SARS-CoV-2 nucleic acid negativity (p = 0.92). There were also no significant differences in the levels of SARS-CoV-2-IgM and IgG antibody production between the two groups (p = 0.13, 0.62). There were 45 cases were discharged from the hospital, and no patients died at the time of this clinical analysis. Conclusions: Risk-adapted treatment strategy was associated with significant clinical manifestations alleviation and clinical imaging recovery. In severe COVID-19 patients, early and short-term use of lowdose methylprednisolone was beneficial and did not delay SARS-CoV-2 nucleic acid clearance and influence IgG antibody production.
Pseudorabies virus (PRV) primarily infects swine but can infect cattle, dogs, and cats. Several studies have reported that PRV can cross the specie barrier and induce human encephalitis, but a definitive diagnosis of human PRV encephalitis is debatable due to the lack of PRV DNA detection. Here, we report a case of human PRV encephalitis diagnosed by the next-generation sequencing (NGS) of PRV sequences in the cerebrospinal fluid (CSF) of a patient. A male pork vendor developed fever and seizures for 6 days. NGS results showed PRV sequences in his CSF and blood. Sanger sequencing showed that PRV DNA in the CSF and PRV antibodies in both the CSF and blood were positive. MRI results revealed multiple inflammatory lesions in the bilateral hemisphere. Based on the clinical and laboratory data, we diagnosed the patient with PRV encephalitis. This case suggests that PRV can infect humans, causing severe viral encephalitis. People at risk of PRV infection should improve their self-protection awareness.
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is spreading worldwide. Measuring the prevention and control of the disease has become a matter requiring urgent focus. Objective Based on coronavirus disease 2019 (COVID-19) clinical data from Wuhan, we conducted an in-depth analysis to clarify some of the pathological mechanisms of the disease and identify simple measures to predict its severity early on. Methods A total of 230 patients with non-mild COVID-19 were recruited, and information on their clinical characteristics, inflammatory cytokines, and T lymphocyte subsets was collected. Risk factors for severity were analyzed by binary logistic regression, and the associations of neutrophil-to-lymphocyte ratios (N/LRs) with illness severity, disease course, CT grading, inflammatory cytokines, and T lymphocyte subsets were evaluated. Results Our results showed that the N/LRs were closely related to interleukin (IL)-6 and IL-10 ( P < 0.001, P = 0.024) and to CD3 + and CD8 + T lymphocytes ( P < 0.001, P = 0.046). In particular, the N/LRs were positively correlated with the severity and course of the disease ( P = 0.021, P < 0.001). Compared to the values at the first test after admission, IL-6 and IL-10 were significantly decreased and increased, respectively, as of the last test before discharge ( P = 0.006, P < 0.001). More importantly, through binary logistic regression, we found that male sex, underlying diseases (such as cardiovascular disease), pulse, and N/LRs were all closely related to the severity of the disease ( P = 0.004, P = 0.012, P = 0.013, P = 0.028). Conclusions As a quick and convenient marker of inflammation, N/LRs may predict the disease course and severity level of non-mild COVID-19; male sex, cardiovascular disease, and pulse are also risk factors for the severity of non-mild COVID-19.
This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical TiCT -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% TiCT -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ∼30% tested at 150 °C. The addition of TiCT -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% TiCT -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young's modulus was increased by ∼150% and ∼160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.