Background Gastric cancer (GC) is a leading cause of cancer deaths, and an increased number of GC patients adopt to next-generation sequencing (NGS) to identify tumor genomic alterations for precision medicine. Methods In this study, we established a hybridization capture-based NGS panel including 612 cancer-associated genes, and collected sequencing data of tumors and matched bloods from 153 gastric cancer patients. We performed comprehensive analysis of these sequencing and clinical data. Results 35 significantly mutated genes were identified such as TP53 , AKAP9 , DRD2 , PTEN , CDH1 , LRP2 et al. Among them, 29 genes were novel significantly mutated genes compared with TCGA study. TP53 is the top frequently mutated gene, and tends to mutate in male (p = 0.025) patients and patients whose tumor located in cardia (p = 0.011). High tumor mutation burden (TMB) gathered in TP53 wild-type tumors (p = 0.045). TMB was also significantly associated with DNA damage repair (DDR) genes genotype (p = 0.047), Lauren classification (p = 1.5e−5), differentiation (1.9e−7), and HER2 status (p = 0.023). 38.31% of gastric cancer patients harbored at least one actionable alteration according to OncoKB database. Conclusions We drew a comprehensive mutational landscape of 153 gastric tumors and demonstrated utility of target next-generation sequencing to guide clinical management. Electronic supplementary material The online version of this article (10.1186/s12967-019-1941-0) contains supplementary material, which is available to authorized users.
Although younger patients with GC exhibit more aggressive cancer patterns and higher recurrence rate in the gastric remnant, the overall 5-year survival rate may be better than older patients.
Gene-viral therapy, which uses replication-selective transgene-expressing viruses to manage tumors, can exploit the virtues of gene therapy and virotherapy and overcome the limitations of conventional gene therapy. Using a human telomerase reverse transcriptase-targeted replicative adenovirus as an antiangiogenic gene transfer vector to target new angiogenesis and making use of its unrestrained proliferation are completely new concepts in tumor management. CNHK300-mE is a selective replication transgene-expressing adenovirus constructed to carry mouse endostatin gene therapeutically. Infection with CNHK300-mE was associated with selective replication of the adenovirus and production of mouse endostatin in telomerase-positive cancer cells. Endostatin secreted from a human gastric cell line, SGC-7901, infected with CNHK300-mE was significantly higher than that infected with nonreplicative adenovirus Ad-mE in vitro (800 ؎ 94.7 ng/ml versus 132.9 ؎ 9.9 ng/ml) and in vivo (610 ؎ 42 ng/ml versus 126 ؎ 13 ng/ml). Embryonic chorioallantoic membrane assay showed that the mouse endostatin secreted by CNHK300-mE inhibited angiogenesis efficiently and also induced distortion of pre-existing vasculature. CNHK300-mE exhibited a superior suppression of xenografts in nude mice compared with CNHK300 and AdmE. In summary, we provided a more efficient gene-viral therapy strategy by combining oncolysis with antiangiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.