Sexual or gonadal differentiation is a complex event and its mechanism remains elusive in teleosts. Despite its complexity and plasticity, the process of ovarian differentiation is believed to involve gonadal aromatase (cyp19a1a) in nearly all species studied. However, most data concerning the role of aromatase have come from gene expression analysis or studies involving pharmacological approaches. There has been a lack of genetic evidence for the importance of aromatase in gonadal differentiation, especially the timing when the enzyme starts to exert its effect. This is due to the lack of appropriate loss-of-function approaches in fish models for studying gene functions. This situation has changed recently with the development of genome editing technologies, namely TALEN and CRISPR/Cas9. Using both TALEN and CRISPR/Cas9, we successfully established three mutant zebrafish lines lacking the ovarian aromatase. As expected, all mutant fish were males, supporting the view that aromatase plays a critical role in directing ovarian differentiation and development. Further analysis showed that the ovarian aromatase did not seem to affect the formation of so-called juvenile ovary and oocyte-like germ cells; however, it was essential for further differentiation of the juvenile ovary into the true ovary.
Previous reports have demonstrated that embryonic stem cells were capable of differentiating into primordial germ cells through the formation of embryoid bodies that subsequently generated oocyte-like cells (OLCs). Such a process could facilitate studies of primordial follicle oocyte development in vitro and regenerative medicine. To investigate the pluripotency of human amniotic fluid stem cells (hAFSCs) and their ability to differentiate into germ cells, we isolated a CD117(+)/CD44(+) hAFSC line that showed fibroblastoid morphology and intrinsically expressed both stem cell markers (OCT4, NANOG, SOX2) and germ cell markers (DAZL, STELLA). To encourage differentiation into OLCs, the hAFSCs were first cultured in a medium supplemented with 5% porcine follicular fluid for 10 days. During the induction period, cell aggregates formed and syntheses of steroid hormones were detected; some OLCs and granulosa cell-like cells could be loosened from the surface of the culture dish. Cell aggregates were collected and replated in oocyte culture medium for an additional 7-10 days. OLCs ranging from 50 to 120 μm presenting zona pellucida were observed in cumulus-oocyte complexes; some OLCs developed spontaneously into multicell structures similar to preimplantation embryos. Approximately 2% of the hAFSCs differentiated to meiotic germ cells that expressed folliculogenesis- and oogenesis-associated markers. Although the in vitro maturation and fertilization potentials are as yet unproven, short-term (<25 days) and high-efficiency (>2%) derivation of OLCs from hAFSCs might provide a new approach to the study of human germ cell development in vitro.
Enamine is a well-known reactive intermediate mediating essential thiamine-dependent catalysis in central metabolic pathways. However, this intermediate is not found in the thiamine-dependent catalysis of the vitamin K biosynthetic enzyme MenD. Instead, an active tetrahedral post-decarboxylation intermediate is stably formed in the enzyme and was structurally determined at 1.34 Å resolution in crystal. This intermediate takes a unique conformation that allows only one proton between its tetrahedral reaction center and the exo-ring nitrogen atom of the aminopyrimidine moiety in the cofactor with a short distance of 3.0 Å. It is readily convertible to the final product of the enzymic reaction with a solvent-exchangeable proton at its reaction center. These results show that the thiamine-dependent enzyme utilizes a tetrahedral intermediate in a mechanism distinct from the enamine catalytic chemistry.
Sex determination and differentiation are complex processes. As a juvenile hermaphrodite or undifferentiated gonochorist, zebrafish undergo a special juvenile ovarian phase during sex differentiation, making it an excellent model for studying early oogenesis and folliculogenesis. We provide lines of evidence at morphological, molecular, and genetic levels for roles of factor in the germline α (Figla), an oocyte-specific transcription factor, in early zebrafish gonadogenesis. As in mammals, Figla/figla was also expressed in the gonads and its expression in the ovary was also restricted to early oocytes. Disruption of figla gene by CRISPR/Cas9 led to an all-male phenotype in the mutant. Detailed analysis of early gonadal development showed that the germ cells in the mutant were clustered in cysts and underwent meiosis, forming oocytes at prefollicular chromatin nucleolar (CN) stage (stage IA). However, the subsequent transition from cystic CN oocytes to individual follicular perinucleolar oocytes (stage IB) was blocked, resulting in an all-male phenotype in the mutant. The phenotype of figla mutant could not be rescued by estrogen treatment, in contrast to cyp19a1a mutant, and introduction of tp53 mutation also had no effect, unlike in fancd1 and fancl mutants. Transcriptome analysis revealed that many biological processes and pathways related to germ cell development, especially oogenesis, were upregulated in the presence of Figla and that the regulation of figla expression may involve heat shock proteins. Our results strongly suggest important roles for Figla in juvenile ovary development, especially the formation of individual follicles from cystic oocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.