We report the sequencing at 131× coverage, de novo assembly and analyses of the genome of a female Tibetan wild boar. We also resequenced the whole genomes of 30 Tibetan wild boars from six major distributed locations and 18 geographically related pigs in China. We characterized genetic diversity, population structure and patterns of evolution. We searched for genomic regions under selection, which includes genes that are involved in hypoxia, olfaction, energy metabolism and drug response. Comparing the genome of Tibetan wild boar with those of neighboring Chinese domestic pigs further showed the impact of thousands of years of artificial selection and different signatures of selection in wild boar and domestic pig. We also report genetic adaptations in Tibetan wild boar that are associated with high altitudes and characterize the genetic basis of increased salivation in domestic pig.
It has long been thought that growth-regulating factors (GRFs) gene family members act as transcriptional activators to play important roles in multiple plant developmental processes. However, the recent characterization of Arabidopsis GRF7 showed that it functions as a transcriptional repressor of osmotic stress-responsive genes. This highlights the complex and diverse mechanisms by which different GRF members use to take action. In this study, the maize (Zea mays L.) GRF10 was functionally characterized to improve this concept. The deduced ZmGRF10 protein retains the N-terminal QLQ and WRC domains, the characteristic regions as protein-interacting and DNA-binding domains, respectively. However, it lacks nearly the entire C-terminal domain, the regions executing transactivation activity. Consistently, ZmGRF10 protein maintains the ability to interact with GRF-interacting factors (GIFs) proteins, but lacks transactivation activity. Overexpression of ZmGRF10 in maize led to a reduction in leaf size and plant height through decreasing cell proliferation, whereas the yield-related traits were not affected. Transcriptome analysis revealed that multiple biological pathways were affected by ZmGRF10 overexpression, including a few transcriptional regulatory genes, which have been demonstrated to have important roles in controlling plant growth and development. We propose that ZmGRF10 aids in fine-tuning the homeostasis of the GRF-GIF complex in the regulation of cell proliferation.
Methylation of Lys residues in the tail of the H3 histone is a key regulator of chromatin state and gene expression, conferred by a large family of enzymes containing an evolutionarily conserved SET domain. One of the main types of SET domain proteins are those controlling H3K4 di-and trimethylation. The genome of Arabidopsis (Arabidopsis thaliana) encodes 12 such proteins, including five ARABIDOPSIS TRITHORAX (ATX) proteins and seven ATX-Related proteins. Here, we examined three untilnow-unexplored ATX proteins, ATX3, ATX4, and ATX5. We found that they exhibit similar domain structures and expression patterns and are redundantly required for vegetative and reproductive development. Concurrent disruption of the ATX3, ATX4, and ATX5 genes caused marked reduction in H3K4me2 and H3K4me3 levels genome-wide and resulted in thousands of genes expressed ectopically. Furthermore, atx3/atx4/atx5 triple mutants resulted in exaggerated phenotypes when combined with the atx2 mutant but not with atx1. Together, we conclude that ATX3, ATX4, and ATX5 are redundantly required for H3K4 di-and trimethylation at thousands of sites located across the genome, and genomic features associated with targeted regions are different from the ATXR3/SDG2-controlled sites in Arabidopsis.
Time-dependent increases in cue-induced nicotine and methamphetamine craving during abstinence were recently reported in human drug-dependent individuals. In the present study, we sought to determine whether this 'incubation of craving' phenomenon also occurs in alcoholics. Four groups of 80 inpatient adult male alcoholics were assessed in a single session (between-group design) for cue-induced alcohol craving at 7, 14, 30 and 60 days of abstinence. Another group that included 19 patients was repeatedly tested for cue-induced alcohol craving at the same abstinence days as above. Other psychological and physiological measures were assessed at the four abstinence timepoints. Cue-induced alcohol craving measured with visual analogue scales was the highest at 60 days of abstinence both between and within groups. However, heart rate, blood pressure and skin conductance responses did not differ between abstinent groups. These results provide evidence of the incubation of alcohol craving in humans, extending previous reports with smokers and methamphetamine addicts.
BackgroundThe growth and development of skeletal muscle directly impacts the quantity and quality of pork production. Chinese indigenous pig breeds and exotic species vary greatly in terms of muscle production and performance traits. We present transcriptome profiles of 110 skeletal muscle samples from Tongcheng (TC) and Yorkshire (YK) pigs at 11 developmental periods (30, 40, 55, 63, 70, 90, and 105 days of gestation, and 0, 1, 3, and 5 weeks of age) using digital gene expression on Solexa/Illumina’s Genome Analyzer platform to investigate the differences in prenatal and postnatal skeletal muscle between the two breeds.ResultsMuscle morphological changes indicate the importance of primary fiber formation from 30 to 40 dpc (days post coitus), and secondary fiber formation from 55 to 70 dpc. We screened 4,331 differentially expressed genes in TC and 2,259 in YK (log2 ratio >1 and probability >0.7). Cluster analysis showed different gene expression patterns between TC and YK pigs. The transcripts were annotated in terms of Gene Ontology related to muscle development. We found that the genes CXCL10, EIF2B5, PSMA6, FBXO32, and LOC100622249 played vital roles in the muscle regulatory networks in the TC breed, whereas the genes SGCD, ENG, THBD, AQP4, and BTG2 played dominant roles in the YK breed. These genes showed breed-specific and development-dependent differential expression patterns. Furthermore, 984 genes were identified in myogenesis. A heat map showed that significantly enriched pathways (FDR <0.05) had stage-specific functional regulatory mechanisms. Finally, the differentially expressed genes from our sequencing results were confirmed by real-time quantitative polymerase chain reaction.ConclusionsThis study detected many functional genes and showed differences in the molecular mechanisms of skeletal muscle development between TC and YK pigs. TC pigs showed slower muscle growth and more complicated genetic regulation than YK pigs. Many differentially expressed genes showed breed-specific expression patterns. Our data provide a better understanding of skeletal muscle developmental differences and valuable information for improving pork quality.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1580-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.