For the optimal design of the sustainable supply chain network, considering the comprehensiveness of the problem factors, considering the three aspects of economy, environment and society, the goal is to minimize the establishment cost, minimize the emission of environ-mental pollution and maximize the number of labor. A mixed integer programming model is established to maximize the efficiency of the supply chain network. The innovation of this paper, first, is to consider the impact of economic, environmental and social benefits in a continuous supply chain, where the environmental benefits not only consider carbon emissions but also include the emissions of plant wastewater, waste and solid waste as influencing factors. Second, a multi-objective fuzzy affiliation function is constructed to measure the quality of the model solution in terms of the overall satisfaction value. Finally, the chaotic particle ant colony algorithm is proposed, and the problem of premature convergence in the operation of the particle swarm algorithm is solved. Experimental results show that the PSCACO algorithm proposed in this paper is compared with MOPSO, CACO and NSGA-II algorithms, and the convergence effect of the algorithm is concluded to be more effective to verify the effectiveness and feasibility of chaotic particle ant colony algorithm for solving multi-objective functions, which proposes a new feasible solution for the supply chain management.
Tensile strength, warping degree, and surface roughness are important indicators to evaluate the quality of fused deposition modeling (FDM) parts, and their accurate and stable prediction is helpful to the development of FDM technology. Thus, a quality prediction method of FDM parts based on an optimized deep belief network was proposed. To determine the combination of process parameters that have the greatest influence on the quality of FDM parts, the correlation analysis method was used to screen the key quality factors that affect the quality of FDM parts. Then, we use 10-fold cross-validation and grid search (GS) to determine the optimal hyperparameter combination of the sparse constrained deep belief network (SDBN), propose an adaptive cuckoo search (ACS) algorithm to optimize the weights and biases of the SDBN, and complete the construction of prediction model based on the above work. The results show that compared with DBN, LSTM, RBFNN, and BPNN, the ACS-SDBN model designed in this article can map the complex nonlinear relationship between FDM part quality characteristics and process parameters more effectively, and the CV verification accuracy of the model can reach more than 95.92%. The prediction accuracy can reach more than 96.67%, and the model has higher accuracy and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.